Metamath Proof Explorer


Theorem dgradd

Description: The degree of a sum of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses dgradd.1
|- M = ( deg ` F )
dgradd.2
|- N = ( deg ` G )
Assertion dgradd
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF + G ) ) <_ if ( M <_ N , N , M ) )

Proof

Step Hyp Ref Expression
1 dgradd.1
 |-  M = ( deg ` F )
2 dgradd.2
 |-  N = ( deg ` G )
3 eqid
 |-  ( coeff ` F ) = ( coeff ` F )
4 eqid
 |-  ( coeff ` G ) = ( coeff ` G )
5 3 4 1 2 coeaddlem
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF + G ) ) = ( ( coeff ` F ) oF + ( coeff ` G ) ) /\ ( deg ` ( F oF + G ) ) <_ if ( M <_ N , N , M ) ) )
6 5 simprd
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF + G ) ) <_ if ( M <_ N , N , M ) )