Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
2 |
1
|
dgrval |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) = sup ( ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |
3 |
|
nn0ssre |
|- NN0 C_ RR |
4 |
|
ltso |
|- < Or RR |
5 |
|
soss |
|- ( NN0 C_ RR -> ( < Or RR -> < Or NN0 ) ) |
6 |
3 4 5
|
mp2 |
|- < Or NN0 |
7 |
6
|
a1i |
|- ( F e. ( Poly ` S ) -> < Or NN0 ) |
8 |
|
0zd |
|- ( F e. ( Poly ` S ) -> 0 e. ZZ ) |
9 |
|
cnvimass |
|- ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) C_ dom ( coeff ` F ) |
10 |
1
|
coef |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) |
11 |
9 10
|
fssdm |
|- ( F e. ( Poly ` S ) -> ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) C_ NN0 ) |
12 |
1
|
dgrlem |
|- ( F e. ( Poly ` S ) -> ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ E. n e. ZZ A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x <_ n ) ) |
13 |
12
|
simprd |
|- ( F e. ( Poly ` S ) -> E. n e. ZZ A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x <_ n ) |
14 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
15 |
14
|
uzsupss |
|- ( ( 0 e. ZZ /\ ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) C_ NN0 /\ E. n e. ZZ A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x <_ n ) -> E. n e. NN0 ( A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x < y ) ) ) |
16 |
8 11 13 15
|
syl3anc |
|- ( F e. ( Poly ` S ) -> E. n e. NN0 ( A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x < y ) ) ) |
17 |
7 16
|
supcl |
|- ( F e. ( Poly ` S ) -> sup ( ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) , NN0 , < ) e. NN0 ) |
18 |
2 17
|
eqeltrd |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |