Step |
Hyp |
Ref |
Expression |
1 |
|
dgrcolem1.1 |
|- N = ( deg ` G ) |
2 |
|
dgrcolem1.2 |
|- ( ph -> M e. NN ) |
3 |
|
dgrcolem1.3 |
|- ( ph -> N e. NN ) |
4 |
|
dgrcolem1.4 |
|- ( ph -> G e. ( Poly ` S ) ) |
5 |
|
oveq2 |
|- ( y = 1 -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ 1 ) ) |
6 |
5
|
mpteq2dv |
|- ( y = 1 -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) |
7 |
6
|
fveq2d |
|- ( y = 1 -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) ) |
8 |
|
oveq1 |
|- ( y = 1 -> ( y x. N ) = ( 1 x. N ) ) |
9 |
7 8
|
eqeq12d |
|- ( y = 1 -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( 1 x. N ) ) ) |
10 |
9
|
imbi2d |
|- ( y = 1 -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( 1 x. N ) ) ) ) |
11 |
|
oveq2 |
|- ( y = d -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ d ) ) |
12 |
11
|
mpteq2dv |
|- ( y = d -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
13 |
12
|
fveq2d |
|- ( y = d -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) ) |
14 |
|
oveq1 |
|- ( y = d -> ( y x. N ) = ( d x. N ) ) |
15 |
13 14
|
eqeq12d |
|- ( y = d -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) ) |
16 |
15
|
imbi2d |
|- ( y = d -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) ) ) |
17 |
|
oveq2 |
|- ( y = ( d + 1 ) -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ ( d + 1 ) ) ) |
18 |
17
|
mpteq2dv |
|- ( y = ( d + 1 ) -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) |
19 |
18
|
fveq2d |
|- ( y = ( d + 1 ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) ) |
20 |
|
oveq1 |
|- ( y = ( d + 1 ) -> ( y x. N ) = ( ( d + 1 ) x. N ) ) |
21 |
19 20
|
eqeq12d |
|- ( y = ( d + 1 ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) |
22 |
21
|
imbi2d |
|- ( y = ( d + 1 ) -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) ) |
23 |
|
oveq2 |
|- ( y = M -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ M ) ) |
24 |
23
|
mpteq2dv |
|- ( y = M -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) |
25 |
24
|
fveq2d |
|- ( y = M -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) ) |
26 |
|
oveq1 |
|- ( y = M -> ( y x. N ) = ( M x. N ) ) |
27 |
25 26
|
eqeq12d |
|- ( y = M -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) ) |
28 |
27
|
imbi2d |
|- ( y = M -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) ) ) |
29 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
30 |
4 29
|
syl |
|- ( ph -> G : CC --> CC ) |
31 |
30
|
ffvelrnda |
|- ( ( ph /\ x e. CC ) -> ( G ` x ) e. CC ) |
32 |
31
|
exp1d |
|- ( ( ph /\ x e. CC ) -> ( ( G ` x ) ^ 1 ) = ( G ` x ) ) |
33 |
32
|
mpteq2dva |
|- ( ph -> ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) = ( x e. CC |-> ( G ` x ) ) ) |
34 |
30
|
feqmptd |
|- ( ph -> G = ( x e. CC |-> ( G ` x ) ) ) |
35 |
33 34
|
eqtr4d |
|- ( ph -> ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) = G ) |
36 |
35
|
fveq2d |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( deg ` G ) ) |
37 |
36 1
|
eqtr4di |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = N ) |
38 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
39 |
38
|
mulid2d |
|- ( ph -> ( 1 x. N ) = N ) |
40 |
37 39
|
eqtr4d |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( 1 x. N ) ) |
41 |
31
|
adantlr |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> ( G ` x ) e. CC ) |
42 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
43 |
42
|
adantl |
|- ( ( ph /\ d e. NN ) -> d e. NN0 ) |
44 |
43
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> d e. NN0 ) |
45 |
41 44
|
expp1d |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> ( ( G ` x ) ^ ( d + 1 ) ) = ( ( ( G ` x ) ^ d ) x. ( G ` x ) ) ) |
46 |
45
|
mpteq2dva |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) = ( x e. CC |-> ( ( ( G ` x ) ^ d ) x. ( G ` x ) ) ) ) |
47 |
|
cnex |
|- CC e. _V |
48 |
47
|
a1i |
|- ( ( ph /\ d e. NN ) -> CC e. _V ) |
49 |
|
ovexd |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> ( ( G ` x ) ^ d ) e. _V ) |
50 |
|
eqidd |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) = ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
51 |
34
|
adantr |
|- ( ( ph /\ d e. NN ) -> G = ( x e. CC |-> ( G ` x ) ) ) |
52 |
48 49 41 50 51
|
offval2 |
|- ( ( ph /\ d e. NN ) -> ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) = ( x e. CC |-> ( ( ( G ` x ) ^ d ) x. ( G ` x ) ) ) ) |
53 |
46 52
|
eqtr4d |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) = ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) |
54 |
53
|
fveq2d |
|- ( ( ph /\ d e. NN ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) ) |
55 |
54
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) ) |
56 |
|
oveq1 |
|- ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) = ( ( d x. N ) + N ) ) |
57 |
56
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) = ( ( d x. N ) + N ) ) |
58 |
|
eqidd |
|- ( ( ph /\ d e. NN ) -> ( y e. CC |-> ( y ^ d ) ) = ( y e. CC |-> ( y ^ d ) ) ) |
59 |
|
oveq1 |
|- ( y = ( G ` x ) -> ( y ^ d ) = ( ( G ` x ) ^ d ) ) |
60 |
41 51 58 59
|
fmptco |
|- ( ( ph /\ d e. NN ) -> ( ( y e. CC |-> ( y ^ d ) ) o. G ) = ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
61 |
|
ssidd |
|- ( ( ph /\ d e. NN ) -> CC C_ CC ) |
62 |
|
1cnd |
|- ( ( ph /\ d e. NN ) -> 1 e. CC ) |
63 |
|
plypow |
|- ( ( CC C_ CC /\ 1 e. CC /\ d e. NN0 ) -> ( y e. CC |-> ( y ^ d ) ) e. ( Poly ` CC ) ) |
64 |
61 62 43 63
|
syl3anc |
|- ( ( ph /\ d e. NN ) -> ( y e. CC |-> ( y ^ d ) ) e. ( Poly ` CC ) ) |
65 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
66 |
4
|
adantr |
|- ( ( ph /\ d e. NN ) -> G e. ( Poly ` S ) ) |
67 |
65 66
|
sselid |
|- ( ( ph /\ d e. NN ) -> G e. ( Poly ` CC ) ) |
68 |
|
addcl |
|- ( ( z e. CC /\ w e. CC ) -> ( z + w ) e. CC ) |
69 |
68
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ ( z e. CC /\ w e. CC ) ) -> ( z + w ) e. CC ) |
70 |
|
mulcl |
|- ( ( z e. CC /\ w e. CC ) -> ( z x. w ) e. CC ) |
71 |
70
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ ( z e. CC /\ w e. CC ) ) -> ( z x. w ) e. CC ) |
72 |
64 67 69 71
|
plyco |
|- ( ( ph /\ d e. NN ) -> ( ( y e. CC |-> ( y ^ d ) ) o. G ) e. ( Poly ` CC ) ) |
73 |
60 72
|
eqeltrrd |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) e. ( Poly ` CC ) ) |
74 |
73
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) e. ( Poly ` CC ) ) |
75 |
|
simpr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) |
76 |
|
simpr |
|- ( ( ph /\ d e. NN ) -> d e. NN ) |
77 |
3
|
adantr |
|- ( ( ph /\ d e. NN ) -> N e. NN ) |
78 |
76 77
|
nnmulcld |
|- ( ( ph /\ d e. NN ) -> ( d x. N ) e. NN ) |
79 |
78
|
nnne0d |
|- ( ( ph /\ d e. NN ) -> ( d x. N ) =/= 0 ) |
80 |
79
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( d x. N ) =/= 0 ) |
81 |
75 80
|
eqnetrd |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) =/= 0 ) |
82 |
|
fveq2 |
|- ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) = 0p -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( deg ` 0p ) ) |
83 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
84 |
82 83
|
eqtrdi |
|- ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) = 0p -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = 0 ) |
85 |
84
|
necon3i |
|- ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) =/= 0 -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) =/= 0p ) |
86 |
81 85
|
syl |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) =/= 0p ) |
87 |
67
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> G e. ( Poly ` CC ) ) |
88 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
89 |
|
fveq2 |
|- ( G = 0p -> ( deg ` G ) = ( deg ` 0p ) ) |
90 |
89 83
|
eqtrdi |
|- ( G = 0p -> ( deg ` G ) = 0 ) |
91 |
1 90
|
eqtrid |
|- ( G = 0p -> N = 0 ) |
92 |
91
|
necon3i |
|- ( N =/= 0 -> G =/= 0p ) |
93 |
88 92
|
syl |
|- ( ph -> G =/= 0p ) |
94 |
93
|
adantr |
|- ( ( ph /\ d e. NN ) -> G =/= 0p ) |
95 |
94
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> G =/= 0p ) |
96 |
|
eqid |
|- ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
97 |
96 1
|
dgrmul |
|- ( ( ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) e. ( Poly ` CC ) /\ ( x e. CC |-> ( ( G ` x ) ^ d ) ) =/= 0p ) /\ ( G e. ( Poly ` CC ) /\ G =/= 0p ) ) -> ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) = ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) ) |
98 |
74 86 87 95 97
|
syl22anc |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) = ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) ) |
99 |
|
nncn |
|- ( d e. NN -> d e. CC ) |
100 |
99
|
adantl |
|- ( ( ph /\ d e. NN ) -> d e. CC ) |
101 |
38
|
adantr |
|- ( ( ph /\ d e. NN ) -> N e. CC ) |
102 |
100 101
|
adddirp1d |
|- ( ( ph /\ d e. NN ) -> ( ( d + 1 ) x. N ) = ( ( d x. N ) + N ) ) |
103 |
102
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ( d + 1 ) x. N ) = ( ( d x. N ) + N ) ) |
104 |
57 98 103
|
3eqtr4rd |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ( d + 1 ) x. N ) = ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) ) |
105 |
55 104
|
eqtr4d |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) |
106 |
105
|
ex |
|- ( ( ph /\ d e. NN ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) |
107 |
106
|
expcom |
|- ( d e. NN -> ( ph -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) ) |
108 |
107
|
a2d |
|- ( d e. NN -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) ) |
109 |
10 16 22 28 40 108
|
nnind |
|- ( M e. NN -> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) ) |
110 |
2 109
|
mpcom |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) |