Step |
Hyp |
Ref |
Expression |
1 |
|
dgreq0.1 |
|- N = ( deg ` F ) |
2 |
|
dgreq0.2 |
|- A = ( coeff ` F ) |
3 |
|
fveq2 |
|- ( F = 0p -> ( coeff ` F ) = ( coeff ` 0p ) ) |
4 |
2 3
|
syl5eq |
|- ( F = 0p -> A = ( coeff ` 0p ) ) |
5 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
6 |
4 5
|
eqtrdi |
|- ( F = 0p -> A = ( NN0 X. { 0 } ) ) |
7 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
8 |
1 7
|
syl5eq |
|- ( F = 0p -> N = ( deg ` 0p ) ) |
9 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
10 |
8 9
|
eqtrdi |
|- ( F = 0p -> N = 0 ) |
11 |
6 10
|
fveq12d |
|- ( F = 0p -> ( A ` N ) = ( ( NN0 X. { 0 } ) ` 0 ) ) |
12 |
|
0nn0 |
|- 0 e. NN0 |
13 |
|
fvconst2g |
|- ( ( 0 e. NN0 /\ 0 e. NN0 ) -> ( ( NN0 X. { 0 } ) ` 0 ) = 0 ) |
14 |
12 12 13
|
mp2an |
|- ( ( NN0 X. { 0 } ) ` 0 ) = 0 |
15 |
11 14
|
eqtrdi |
|- ( F = 0p -> ( A ` N ) = 0 ) |
16 |
2
|
coefv0 |
|- ( F e. ( Poly ` S ) -> ( F ` 0 ) = ( A ` 0 ) ) |
17 |
16
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( F ` 0 ) = ( A ` 0 ) ) |
18 |
|
simpr |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> N e. NN ) |
19 |
18
|
nnred |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> N e. RR ) |
20 |
19
|
ltm1d |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> ( N - 1 ) < N ) |
21 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
22 |
21
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> N e. RR ) |
23 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
24 |
22 23
|
syl |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> ( N - 1 ) e. RR ) |
25 |
|
simpll |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> F e. ( Poly ` S ) ) |
26 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
27 |
26
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> ( N - 1 ) e. NN0 ) |
28 |
2 1
|
dgrub |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N ) |
29 |
28
|
3expia |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
30 |
29
|
ad2ant2rl |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
31 |
|
simplr |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( A ` N ) = 0 ) |
32 |
|
fveqeq2 |
|- ( N = k -> ( ( A ` N ) = 0 <-> ( A ` k ) = 0 ) ) |
33 |
31 32
|
syl5ibcom |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( N = k -> ( A ` k ) = 0 ) ) |
34 |
33
|
necon3d |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( ( A ` k ) =/= 0 -> N =/= k ) ) |
35 |
30 34
|
jcad |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( ( A ` k ) =/= 0 -> ( k <_ N /\ N =/= k ) ) ) |
36 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
37 |
36
|
ad2antll |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> k e. RR ) |
38 |
21
|
ad2antrl |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> N e. RR ) |
39 |
37 38
|
ltlend |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( k < N <-> ( k <_ N /\ N =/= k ) ) ) |
40 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
41 |
40
|
ad2antll |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> k e. ZZ ) |
42 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
43 |
42
|
ad2antrl |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> N e. ZZ ) |
44 |
|
zltlem1 |
|- ( ( k e. ZZ /\ N e. ZZ ) -> ( k < N <-> k <_ ( N - 1 ) ) ) |
45 |
41 43 44
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( k < N <-> k <_ ( N - 1 ) ) ) |
46 |
39 45
|
bitr3d |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( ( k <_ N /\ N =/= k ) <-> k <_ ( N - 1 ) ) ) |
47 |
35 46
|
sylibd |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ ( N e. NN /\ k e. NN0 ) ) -> ( ( A ` k ) =/= 0 -> k <_ ( N - 1 ) ) ) |
48 |
47
|
expr |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> ( k e. NN0 -> ( ( A ` k ) =/= 0 -> k <_ ( N - 1 ) ) ) ) |
49 |
48
|
ralrimiv |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ ( N - 1 ) ) ) |
50 |
2
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
51 |
50
|
ad2antrr |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> A : NN0 --> CC ) |
52 |
|
plyco0 |
|- ( ( ( N - 1 ) e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ ( N - 1 ) ) ) ) |
53 |
27 51 52
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> ( ( A " ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ ( N - 1 ) ) ) ) |
54 |
49 53
|
mpbird |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> ( A " ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) = { 0 } ) |
55 |
2 1
|
dgrlb |
|- ( ( F e. ( Poly ` S ) /\ ( N - 1 ) e. NN0 /\ ( A " ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) = { 0 } ) -> N <_ ( N - 1 ) ) |
56 |
25 27 54 55
|
syl3anc |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> N <_ ( N - 1 ) ) |
57 |
22 24 56
|
lensymd |
|- ( ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) /\ N e. NN ) -> -. ( N - 1 ) < N ) |
58 |
20 57
|
pm2.65da |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> -. N e. NN ) |
59 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
60 |
1 59
|
eqeltrid |
|- ( F e. ( Poly ` S ) -> N e. NN0 ) |
61 |
60
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> N e. NN0 ) |
62 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
63 |
61 62
|
sylib |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( N e. NN \/ N = 0 ) ) |
64 |
63
|
ord |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( -. N e. NN -> N = 0 ) ) |
65 |
58 64
|
mpd |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> N = 0 ) |
66 |
65
|
fveq2d |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( A ` N ) = ( A ` 0 ) ) |
67 |
|
simpr |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( A ` N ) = 0 ) |
68 |
17 66 67
|
3eqtr2d |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( F ` 0 ) = 0 ) |
69 |
68
|
sneqd |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> { ( F ` 0 ) } = { 0 } ) |
70 |
69
|
xpeq2d |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( CC X. { ( F ` 0 ) } ) = ( CC X. { 0 } ) ) |
71 |
1 65
|
eqtr3id |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( deg ` F ) = 0 ) |
72 |
|
0dgrb |
|- ( F e. ( Poly ` S ) -> ( ( deg ` F ) = 0 <-> F = ( CC X. { ( F ` 0 ) } ) ) ) |
73 |
72
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> ( ( deg ` F ) = 0 <-> F = ( CC X. { ( F ` 0 ) } ) ) ) |
74 |
71 73
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> F = ( CC X. { ( F ` 0 ) } ) ) |
75 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
76 |
75
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> 0p = ( CC X. { 0 } ) ) |
77 |
70 74 76
|
3eqtr4d |
|- ( ( F e. ( Poly ` S ) /\ ( A ` N ) = 0 ) -> F = 0p ) |
78 |
77
|
ex |
|- ( F e. ( Poly ` S ) -> ( ( A ` N ) = 0 -> F = 0p ) ) |
79 |
15 78
|
impbid2 |
|- ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |