Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
3 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
4 |
2 3
|
eqeltrid |
|- ( F e. ( Poly ` S ) -> N e. NN0 ) |
5 |
4
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> N e. NN0 ) |
6 |
5
|
nn0red |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> N e. RR ) |
7 |
|
simp2 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> M e. NN0 ) |
8 |
7
|
nn0red |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> M e. RR ) |
9 |
1
|
dgrlem |
|- ( F e. ( Poly ` S ) -> ( A : NN0 --> ( S u. { 0 } ) /\ E. n e. ZZ A. x e. ( `' A " ( CC \ { 0 } ) ) x <_ n ) ) |
10 |
9
|
simpld |
|- ( F e. ( Poly ` S ) -> A : NN0 --> ( S u. { 0 } ) ) |
11 |
10
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> A : NN0 --> ( S u. { 0 } ) ) |
12 |
|
ffn |
|- ( A : NN0 --> ( S u. { 0 } ) -> A Fn NN0 ) |
13 |
|
elpreima |
|- ( A Fn NN0 -> ( y e. ( `' A " ( CC \ { 0 } ) ) <-> ( y e. NN0 /\ ( A ` y ) e. ( CC \ { 0 } ) ) ) ) |
14 |
11 12 13
|
3syl |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> ( y e. ( `' A " ( CC \ { 0 } ) ) <-> ( y e. NN0 /\ ( A ` y ) e. ( CC \ { 0 } ) ) ) ) |
15 |
14
|
biimpa |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> ( y e. NN0 /\ ( A ` y ) e. ( CC \ { 0 } ) ) ) |
16 |
15
|
simpld |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> y e. NN0 ) |
17 |
16
|
nn0red |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> y e. RR ) |
18 |
8
|
adantr |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> M e. RR ) |
19 |
|
eldifsni |
|- ( ( A ` y ) e. ( CC \ { 0 } ) -> ( A ` y ) =/= 0 ) |
20 |
15 19
|
simpl2im |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> ( A ` y ) =/= 0 ) |
21 |
|
simp3 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) |
22 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
23 |
22
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> A : NN0 --> CC ) |
24 |
|
plyco0 |
|- ( ( M e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. y e. NN0 ( ( A ` y ) =/= 0 -> y <_ M ) ) ) |
25 |
7 23 24
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> ( ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. y e. NN0 ( ( A ` y ) =/= 0 -> y <_ M ) ) ) |
26 |
21 25
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> A. y e. NN0 ( ( A ` y ) =/= 0 -> y <_ M ) ) |
27 |
26
|
r19.21bi |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. NN0 ) -> ( ( A ` y ) =/= 0 -> y <_ M ) ) |
28 |
16 27
|
syldan |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> ( ( A ` y ) =/= 0 -> y <_ M ) ) |
29 |
20 28
|
mpd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> y <_ M ) |
30 |
17 18 29
|
lensymd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) /\ y e. ( `' A " ( CC \ { 0 } ) ) ) -> -. M < y ) |
31 |
30
|
ralrimiva |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> A. y e. ( `' A " ( CC \ { 0 } ) ) -. M < y ) |
32 |
|
nn0ssre |
|- NN0 C_ RR |
33 |
|
ltso |
|- < Or RR |
34 |
|
soss |
|- ( NN0 C_ RR -> ( < Or RR -> < Or NN0 ) ) |
35 |
32 33 34
|
mp2 |
|- < Or NN0 |
36 |
35
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> < Or NN0 ) |
37 |
|
0zd |
|- ( F e. ( Poly ` S ) -> 0 e. ZZ ) |
38 |
|
cnvimass |
|- ( `' A " ( CC \ { 0 } ) ) C_ dom A |
39 |
38 10
|
fssdm |
|- ( F e. ( Poly ` S ) -> ( `' A " ( CC \ { 0 } ) ) C_ NN0 ) |
40 |
9
|
simprd |
|- ( F e. ( Poly ` S ) -> E. n e. ZZ A. x e. ( `' A " ( CC \ { 0 } ) ) x <_ n ) |
41 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
42 |
41
|
uzsupss |
|- ( ( 0 e. ZZ /\ ( `' A " ( CC \ { 0 } ) ) C_ NN0 /\ E. n e. ZZ A. x e. ( `' A " ( CC \ { 0 } ) ) x <_ n ) -> E. n e. NN0 ( A. x e. ( `' A " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' A " ( CC \ { 0 } ) ) x < y ) ) ) |
43 |
37 39 40 42
|
syl3anc |
|- ( F e. ( Poly ` S ) -> E. n e. NN0 ( A. x e. ( `' A " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' A " ( CC \ { 0 } ) ) x < y ) ) ) |
44 |
43
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> E. n e. NN0 ( A. x e. ( `' A " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' A " ( CC \ { 0 } ) ) x < y ) ) ) |
45 |
36 44
|
supnub |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> ( ( M e. NN0 /\ A. y e. ( `' A " ( CC \ { 0 } ) ) -. M < y ) -> -. M < sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) ) |
46 |
7 31 45
|
mp2and |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> -. M < sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) |
47 |
1
|
dgrval |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) = sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) |
48 |
2 47
|
syl5eq |
|- ( F e. ( Poly ` S ) -> N = sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> N = sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) |
50 |
49
|
breq2d |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> ( M < N <-> M < sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) ) |
51 |
46 50
|
mtbird |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> -. M < N ) |
52 |
6 8 51
|
nltled |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> N <_ M ) |