| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgradd.1 |  |-  M = ( deg ` F ) | 
						
							| 2 |  | dgradd.2 |  |-  N = ( deg ` G ) | 
						
							| 3 | 1 2 | dgrmul2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF x. G ) ) <_ ( M + N ) ) | 
						
							| 4 | 3 | ad2ant2r |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( deg ` ( F oF x. G ) ) <_ ( M + N ) ) | 
						
							| 5 |  | plymulcl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF x. G ) e. ( Poly ` CC ) ) | 
						
							| 6 | 5 | ad2ant2r |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( F oF x. G ) e. ( Poly ` CC ) ) | 
						
							| 7 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 8 | 1 7 | eqeltrid |  |-  ( F e. ( Poly ` S ) -> M e. NN0 ) | 
						
							| 9 | 8 | ad2antrr |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> M e. NN0 ) | 
						
							| 10 |  | dgrcl |  |-  ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) | 
						
							| 11 | 2 10 | eqeltrid |  |-  ( G e. ( Poly ` S ) -> N e. NN0 ) | 
						
							| 12 | 11 | ad2antrl |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> N e. NN0 ) | 
						
							| 13 | 9 12 | nn0addcld |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( M + N ) e. NN0 ) | 
						
							| 14 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 15 |  | eqid |  |-  ( coeff ` G ) = ( coeff ` G ) | 
						
							| 16 | 14 15 1 2 | coemulhi |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) = ( ( ( coeff ` F ) ` M ) x. ( ( coeff ` G ) ` N ) ) ) | 
						
							| 17 | 16 | ad2ant2r |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) = ( ( ( coeff ` F ) ` M ) x. ( ( coeff ` G ) ` N ) ) ) | 
						
							| 18 | 14 | coef3 |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 20 | 19 9 | ffvelcdmd |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( coeff ` F ) ` M ) e. CC ) | 
						
							| 21 | 15 | coef3 |  |-  ( G e. ( Poly ` S ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 22 | 21 | ad2antrl |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 23 | 22 12 | ffvelcdmd |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( coeff ` G ) ` N ) e. CC ) | 
						
							| 24 | 1 14 | dgreq0 |  |-  ( F e. ( Poly ` S ) -> ( F = 0p <-> ( ( coeff ` F ) ` M ) = 0 ) ) | 
						
							| 25 | 24 | necon3bid |  |-  ( F e. ( Poly ` S ) -> ( F =/= 0p <-> ( ( coeff ` F ) ` M ) =/= 0 ) ) | 
						
							| 26 | 25 | biimpa |  |-  ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( ( coeff ` F ) ` M ) =/= 0 ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( coeff ` F ) ` M ) =/= 0 ) | 
						
							| 28 | 2 15 | dgreq0 |  |-  ( G e. ( Poly ` S ) -> ( G = 0p <-> ( ( coeff ` G ) ` N ) = 0 ) ) | 
						
							| 29 | 28 | necon3bid |  |-  ( G e. ( Poly ` S ) -> ( G =/= 0p <-> ( ( coeff ` G ) ` N ) =/= 0 ) ) | 
						
							| 30 | 29 | biimpa |  |-  ( ( G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( coeff ` G ) ` N ) =/= 0 ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( coeff ` G ) ` N ) =/= 0 ) | 
						
							| 32 | 20 23 27 31 | mulne0d |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( ( coeff ` F ) ` M ) x. ( ( coeff ` G ) ` N ) ) =/= 0 ) | 
						
							| 33 | 17 32 | eqnetrd |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) =/= 0 ) | 
						
							| 34 |  | eqid |  |-  ( coeff ` ( F oF x. G ) ) = ( coeff ` ( F oF x. G ) ) | 
						
							| 35 |  | eqid |  |-  ( deg ` ( F oF x. G ) ) = ( deg ` ( F oF x. G ) ) | 
						
							| 36 | 34 35 | dgrub |  |-  ( ( ( F oF x. G ) e. ( Poly ` CC ) /\ ( M + N ) e. NN0 /\ ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) =/= 0 ) -> ( M + N ) <_ ( deg ` ( F oF x. G ) ) ) | 
						
							| 37 | 6 13 33 36 | syl3anc |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( M + N ) <_ ( deg ` ( F oF x. G ) ) ) | 
						
							| 38 |  | dgrcl |  |-  ( ( F oF x. G ) e. ( Poly ` CC ) -> ( deg ` ( F oF x. G ) ) e. NN0 ) | 
						
							| 39 | 6 38 | syl |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( deg ` ( F oF x. G ) ) e. NN0 ) | 
						
							| 40 | 39 | nn0red |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( deg ` ( F oF x. G ) ) e. RR ) | 
						
							| 41 | 13 | nn0red |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( M + N ) e. RR ) | 
						
							| 42 | 40 41 | letri3d |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( ( deg ` ( F oF x. G ) ) = ( M + N ) <-> ( ( deg ` ( F oF x. G ) ) <_ ( M + N ) /\ ( M + N ) <_ ( deg ` ( F oF x. G ) ) ) ) ) | 
						
							| 43 | 4 37 42 | mpbir2and |  |-  ( ( ( F e. ( Poly ` S ) /\ F =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( deg ` ( F oF x. G ) ) = ( M + N ) ) |