Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( F = 0p -> ( ( CC X. { A } ) oF x. F ) = ( ( CC X. { A } ) oF x. 0p ) ) |
2 |
1
|
fveq2d |
|- ( F = 0p -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) ) |
3 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
4 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
5 |
3 4
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
6 |
2 5
|
eqeq12d |
|- ( F = 0p -> ( ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` F ) <-> ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) = 0 ) ) |
7 |
|
ssid |
|- CC C_ CC |
8 |
|
simpl1 |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> A e. CC ) |
9 |
|
plyconst |
|- ( ( CC C_ CC /\ A e. CC ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
10 |
7 8 9
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
11 |
|
0cn |
|- 0 e. CC |
12 |
|
fvconst2g |
|- ( ( A e. CC /\ 0 e. CC ) -> ( ( CC X. { A } ) ` 0 ) = A ) |
13 |
8 11 12
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( ( CC X. { A } ) ` 0 ) = A ) |
14 |
|
simpl2 |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> A =/= 0 ) |
15 |
13 14
|
eqnetrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( ( CC X. { A } ) ` 0 ) =/= 0 ) |
16 |
|
ne0p |
|- ( ( 0 e. CC /\ ( ( CC X. { A } ) ` 0 ) =/= 0 ) -> ( CC X. { A } ) =/= 0p ) |
17 |
11 15 16
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( CC X. { A } ) =/= 0p ) |
18 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
19 |
|
simpl3 |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> F e. ( Poly ` S ) ) |
20 |
18 19
|
sselid |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> F e. ( Poly ` CC ) ) |
21 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> F =/= 0p ) |
22 |
|
eqid |
|- ( deg ` ( CC X. { A } ) ) = ( deg ` ( CC X. { A } ) ) |
23 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
24 |
22 23
|
dgrmul |
|- ( ( ( ( CC X. { A } ) e. ( Poly ` CC ) /\ ( CC X. { A } ) =/= 0p ) /\ ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( ( deg ` ( CC X. { A } ) ) + ( deg ` F ) ) ) |
25 |
10 17 20 21 24
|
syl22anc |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( ( deg ` ( CC X. { A } ) ) + ( deg ` F ) ) ) |
26 |
|
0dgr |
|- ( A e. CC -> ( deg ` ( CC X. { A } ) ) = 0 ) |
27 |
8 26
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` ( CC X. { A } ) ) = 0 ) |
28 |
27
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( ( deg ` ( CC X. { A } ) ) + ( deg ` F ) ) = ( 0 + ( deg ` F ) ) ) |
29 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
30 |
19 29
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` F ) e. NN0 ) |
31 |
30
|
nn0cnd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` F ) e. CC ) |
32 |
31
|
addid2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( 0 + ( deg ` F ) ) = ( deg ` F ) ) |
33 |
25 28 32
|
3eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` F ) ) |
34 |
|
cnex |
|- CC e. _V |
35 |
34
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> CC e. _V ) |
36 |
|
simp1 |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> A e. CC ) |
37 |
11
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> 0 e. CC ) |
38 |
35 36 37
|
ofc12 |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( ( CC X. { A } ) oF x. ( CC X. { 0 } ) ) = ( CC X. { ( A x. 0 ) } ) ) |
39 |
36
|
mul01d |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( A x. 0 ) = 0 ) |
40 |
39
|
sneqd |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> { ( A x. 0 ) } = { 0 } ) |
41 |
40
|
xpeq2d |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( CC X. { ( A x. 0 ) } ) = ( CC X. { 0 } ) ) |
42 |
38 41
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( ( CC X. { A } ) oF x. ( CC X. { 0 } ) ) = ( CC X. { 0 } ) ) |
43 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
44 |
43
|
oveq2i |
|- ( ( CC X. { A } ) oF x. 0p ) = ( ( CC X. { A } ) oF x. ( CC X. { 0 } ) ) |
45 |
42 44 43
|
3eqtr4g |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( ( CC X. { A } ) oF x. 0p ) = 0p ) |
46 |
45
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) = ( deg ` 0p ) ) |
47 |
46 4
|
eqtrdi |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) = 0 ) |
48 |
6 33 47
|
pm2.61ne |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` F ) ) |