Metamath Proof Explorer


Theorem dgrub2

Description: All the coefficients above the degree of F are zero. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypotheses dgrub.1
|- A = ( coeff ` F )
dgrub.2
|- N = ( deg ` F )
Assertion dgrub2
|- ( F e. ( Poly ` S ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } )

Proof

Step Hyp Ref Expression
1 dgrub.1
 |-  A = ( coeff ` F )
2 dgrub.2
 |-  N = ( deg ` F )
3 1 2 dgrub
 |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N )
4 3 3expia
 |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) )
5 4 ralrimiva
 |-  ( F e. ( Poly ` S ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) )
6 dgrcl
 |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 )
7 2 6 eqeltrid
 |-  ( F e. ( Poly ` S ) -> N e. NN0 )
8 1 coef3
 |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC )
9 plyco0
 |-  ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) )
10 7 8 9 syl2anc
 |-  ( F e. ( Poly ` S ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) )
11 5 10 mpbird
 |-  ( F e. ( Poly ` S ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } )