Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
3 |
1 2
|
dgrub |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N ) |
4 |
3
|
3expia |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
5 |
4
|
ralrimiva |
|- ( F e. ( Poly ` S ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
6 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
7 |
2 6
|
eqeltrid |
|- ( F e. ( Poly ` S ) -> N e. NN0 ) |
8 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
9 |
|
plyco0 |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |
10 |
7 8 9
|
syl2anc |
|- ( F e. ( Poly ` S ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |
11 |
5 10
|
mpbird |
|- ( F e. ( Poly ` S ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |