Metamath Proof Explorer


Theorem dia2dimlem4

Description: Lemma for dia2dim . Show that the composition (sum) of translations (vectors) G and D equals F . Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem4.l
|- .<_ = ( le ` K )
dia2dimlem4.a
|- A = ( Atoms ` K )
dia2dimlem4.h
|- H = ( LHyp ` K )
dia2dimlem4.t
|- T = ( ( LTrn ` K ) ` W )
dia2dimlem4.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dia2dimlem4.p
|- ( ph -> ( P e. A /\ -. P .<_ W ) )
dia2dimlem4.f
|- ( ph -> F e. T )
dia2dimlem4.g
|- ( ph -> G e. T )
dia2dimlem4.gv
|- ( ph -> ( G ` P ) = Q )
dia2dimlem4.d
|- ( ph -> D e. T )
dia2dimlem4.dv
|- ( ph -> ( D ` Q ) = ( F ` P ) )
Assertion dia2dimlem4
|- ( ph -> ( D o. G ) = F )

Proof

Step Hyp Ref Expression
1 dia2dimlem4.l
 |-  .<_ = ( le ` K )
2 dia2dimlem4.a
 |-  A = ( Atoms ` K )
3 dia2dimlem4.h
 |-  H = ( LHyp ` K )
4 dia2dimlem4.t
 |-  T = ( ( LTrn ` K ) ` W )
5 dia2dimlem4.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 dia2dimlem4.p
 |-  ( ph -> ( P e. A /\ -. P .<_ W ) )
7 dia2dimlem4.f
 |-  ( ph -> F e. T )
8 dia2dimlem4.g
 |-  ( ph -> G e. T )
9 dia2dimlem4.gv
 |-  ( ph -> ( G ` P ) = Q )
10 dia2dimlem4.d
 |-  ( ph -> D e. T )
11 dia2dimlem4.dv
 |-  ( ph -> ( D ` Q ) = ( F ` P ) )
12 3 4 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ G e. T ) -> ( D o. G ) e. T )
13 5 10 8 12 syl3anc
 |-  ( ph -> ( D o. G ) e. T )
14 6 simpld
 |-  ( ph -> P e. A )
15 1 2 3 4 ltrncoval
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T ) /\ P e. A ) -> ( ( D o. G ) ` P ) = ( D ` ( G ` P ) ) )
16 5 10 8 14 15 syl121anc
 |-  ( ph -> ( ( D o. G ) ` P ) = ( D ` ( G ` P ) ) )
17 9 fveq2d
 |-  ( ph -> ( D ` ( G ` P ) ) = ( D ` Q ) )
18 16 17 11 3eqtrd
 |-  ( ph -> ( ( D o. G ) ` P ) = ( F ` P ) )
19 1 2 3 4 cdlemd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( D o. G ) e. T /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( D o. G ) ` P ) = ( F ` P ) ) -> ( D o. G ) = F )
20 5 13 7 6 18 19 syl311anc
 |-  ( ph -> ( D o. G ) = F )