| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diafn.b |
|- B = ( Base ` K ) |
| 2 |
|
diafn.l |
|- .<_ = ( le ` K ) |
| 3 |
|
diafn.h |
|- H = ( LHyp ` K ) |
| 4 |
|
diafn.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 5 |
1 2 3 4
|
diadm |
|- ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } ) |
| 6 |
5
|
eleq2d |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> X e. { x e. B | x .<_ W } ) ) |
| 7 |
|
breq1 |
|- ( x = X -> ( x .<_ W <-> X .<_ W ) ) |
| 8 |
7
|
elrab |
|- ( X e. { x e. B | x .<_ W } <-> ( X e. B /\ X .<_ W ) ) |
| 9 |
6 8
|
bitrdi |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> ( X e. B /\ X .<_ W ) ) ) |