| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag1.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
diag1.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
diag1.a |
|- A = ( Base ` C ) |
| 5 |
|
diag1.x |
|- ( ph -> X e. A ) |
| 6 |
|
diag1.k |
|- K = ( ( 1st ` L ) ` X ) |
| 7 |
|
diag1.b |
|- B = ( Base ` D ) |
| 8 |
|
diag1.j |
|- J = ( Hom ` D ) |
| 9 |
|
diag1.i |
|- .1. = ( Id ` C ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
diag1 |
|- ( ph -> K = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |
| 11 |
|
fconstmpt |
|- ( B X. { X } ) = ( y e. B |-> X ) |
| 12 |
|
fconstmpt |
|- ( ( y J z ) X. { ( .1. ` X ) } ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) |
| 13 |
12
|
a1i |
|- ( ( y e. B /\ z e. B ) -> ( ( y J z ) X. { ( .1. ` X ) } ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 14 |
13
|
mpoeq3ia |
|- ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) = ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 15 |
11 14
|
opeq12i |
|- <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) >. = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. |
| 16 |
10 15
|
eqtr4di |
|- ( ph -> K = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) >. ) |