| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibfn.b |
|- B = ( Base ` K ) |
| 2 |
|
dibfn.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dibfn.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dibfn.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 5 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
| 6 |
3 5 4
|
dibdiadm |
|- ( ( K e. V /\ W e. H ) -> dom I = dom ( ( DIsoA ` K ) ` W ) ) |
| 7 |
6
|
eleq2d |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> X e. dom ( ( DIsoA ` K ) ` W ) ) ) |
| 8 |
1 2 3 5
|
diaeldm |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom ( ( DIsoA ` K ) ` W ) <-> ( X e. B /\ X .<_ W ) ) ) |
| 9 |
7 8
|
bitrd |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> ( X e. B /\ X .<_ W ) ) ) |