Metamath Proof Explorer


Theorem dibval3N

Description: Value of the partial isomorphism B for a lattice K . (Contributed by NM, 24-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibval3.b
|- B = ( Base ` K )
dibval3.l
|- .<_ = ( le ` K )
dibval3.h
|- H = ( LHyp ` K )
dibval3.t
|- T = ( ( LTrn ` K ) ` W )
dibval3.r
|- R = ( ( trL ` K ) ` W )
dibval3.o
|- .0. = ( g e. T |-> ( _I |` B ) )
dibval3.i
|- I = ( ( DIsoB ` K ) ` W )
Assertion dibval3N
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( { f e. T | ( R ` f ) .<_ X } X. { .0. } ) )

Proof

Step Hyp Ref Expression
1 dibval3.b
 |-  B = ( Base ` K )
2 dibval3.l
 |-  .<_ = ( le ` K )
3 dibval3.h
 |-  H = ( LHyp ` K )
4 dibval3.t
 |-  T = ( ( LTrn ` K ) ` W )
5 dibval3.r
 |-  R = ( ( trL ` K ) ` W )
6 dibval3.o
 |-  .0. = ( g e. T |-> ( _I |` B ) )
7 dibval3.i
 |-  I = ( ( DIsoB ` K ) ` W )
8 eqid
 |-  ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W )
9 1 2 3 4 6 8 7 dibval2
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) )
10 1 2 3 4 5 8 diaval
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( DIsoA ` K ) ` W ) ` X ) = { f e. T | ( R ` f ) .<_ X } )
11 10 xpeq1d
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) = ( { f e. T | ( R ` f ) .<_ X } X. { .0. } ) )
12 9 11 eqtrd
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( { f e. T | ( R ` f ) .<_ X } X. { .0. } ) )