Step |
Hyp |
Ref |
Expression |
1 |
|
peano2 |
|- ( M e. _om -> suc M e. _om ) |
2 |
|
breq2 |
|- ( x = suc M -> ( A ~~ x <-> A ~~ suc M ) ) |
3 |
2
|
rspcev |
|- ( ( suc M e. _om /\ A ~~ suc M ) -> E. x e. _om A ~~ x ) |
4 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
5 |
3 4
|
sylibr |
|- ( ( suc M e. _om /\ A ~~ suc M ) -> A e. Fin ) |
6 |
1 5
|
sylan |
|- ( ( M e. _om /\ A ~~ suc M ) -> A e. Fin ) |
7 |
|
diffi |
|- ( A e. Fin -> ( A \ { X } ) e. Fin ) |
8 |
|
isfi |
|- ( ( A \ { X } ) e. Fin <-> E. x e. _om ( A \ { X } ) ~~ x ) |
9 |
7 8
|
sylib |
|- ( A e. Fin -> E. x e. _om ( A \ { X } ) ~~ x ) |
10 |
6 9
|
syl |
|- ( ( M e. _om /\ A ~~ suc M ) -> E. x e. _om ( A \ { X } ) ~~ x ) |
11 |
10
|
3adant3 |
|- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> E. x e. _om ( A \ { X } ) ~~ x ) |
12 |
|
en2sn |
|- ( ( X e. A /\ x e. _V ) -> { X } ~~ { x } ) |
13 |
12
|
elvd |
|- ( X e. A -> { X } ~~ { x } ) |
14 |
|
nnord |
|- ( x e. _om -> Ord x ) |
15 |
|
orddisj |
|- ( Ord x -> ( x i^i { x } ) = (/) ) |
16 |
14 15
|
syl |
|- ( x e. _om -> ( x i^i { x } ) = (/) ) |
17 |
|
incom |
|- ( ( A \ { X } ) i^i { X } ) = ( { X } i^i ( A \ { X } ) ) |
18 |
|
disjdif |
|- ( { X } i^i ( A \ { X } ) ) = (/) |
19 |
17 18
|
eqtri |
|- ( ( A \ { X } ) i^i { X } ) = (/) |
20 |
|
unen |
|- ( ( ( ( A \ { X } ) ~~ x /\ { X } ~~ { x } ) /\ ( ( ( A \ { X } ) i^i { X } ) = (/) /\ ( x i^i { x } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) |
21 |
20
|
an4s |
|- ( ( ( ( A \ { X } ) ~~ x /\ ( ( A \ { X } ) i^i { X } ) = (/) ) /\ ( { X } ~~ { x } /\ ( x i^i { x } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) |
22 |
19 21
|
mpanl2 |
|- ( ( ( A \ { X } ) ~~ x /\ ( { X } ~~ { x } /\ ( x i^i { x } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) |
23 |
22
|
expcom |
|- ( ( { X } ~~ { x } /\ ( x i^i { x } ) = (/) ) -> ( ( A \ { X } ) ~~ x -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) ) |
24 |
13 16 23
|
syl2an |
|- ( ( X e. A /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) ) |
25 |
24
|
3ad2antl3 |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) ) |
26 |
|
difsnid |
|- ( X e. A -> ( ( A \ { X } ) u. { X } ) = A ) |
27 |
|
df-suc |
|- suc x = ( x u. { x } ) |
28 |
27
|
eqcomi |
|- ( x u. { x } ) = suc x |
29 |
28
|
a1i |
|- ( X e. A -> ( x u. { x } ) = suc x ) |
30 |
26 29
|
breq12d |
|- ( X e. A -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) <-> A ~~ suc x ) ) |
31 |
30
|
3ad2ant3 |
|- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) <-> A ~~ suc x ) ) |
32 |
31
|
adantr |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) <-> A ~~ suc x ) ) |
33 |
|
ensym |
|- ( A ~~ suc M -> suc M ~~ A ) |
34 |
|
entr |
|- ( ( suc M ~~ A /\ A ~~ suc x ) -> suc M ~~ suc x ) |
35 |
|
peano2 |
|- ( x e. _om -> suc x e. _om ) |
36 |
|
nneneq |
|- ( ( suc M e. _om /\ suc x e. _om ) -> ( suc M ~~ suc x <-> suc M = suc x ) ) |
37 |
35 36
|
sylan2 |
|- ( ( suc M e. _om /\ x e. _om ) -> ( suc M ~~ suc x <-> suc M = suc x ) ) |
38 |
34 37
|
syl5ib |
|- ( ( suc M e. _om /\ x e. _om ) -> ( ( suc M ~~ A /\ A ~~ suc x ) -> suc M = suc x ) ) |
39 |
38
|
expd |
|- ( ( suc M e. _om /\ x e. _om ) -> ( suc M ~~ A -> ( A ~~ suc x -> suc M = suc x ) ) ) |
40 |
33 39
|
syl5 |
|- ( ( suc M e. _om /\ x e. _om ) -> ( A ~~ suc M -> ( A ~~ suc x -> suc M = suc x ) ) ) |
41 |
1 40
|
sylan |
|- ( ( M e. _om /\ x e. _om ) -> ( A ~~ suc M -> ( A ~~ suc x -> suc M = suc x ) ) ) |
42 |
41
|
imp |
|- ( ( ( M e. _om /\ x e. _om ) /\ A ~~ suc M ) -> ( A ~~ suc x -> suc M = suc x ) ) |
43 |
42
|
an32s |
|- ( ( ( M e. _om /\ A ~~ suc M ) /\ x e. _om ) -> ( A ~~ suc x -> suc M = suc x ) ) |
44 |
43
|
3adantl3 |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( A ~~ suc x -> suc M = suc x ) ) |
45 |
32 44
|
sylbid |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) -> suc M = suc x ) ) |
46 |
|
peano4 |
|- ( ( M e. _om /\ x e. _om ) -> ( suc M = suc x <-> M = x ) ) |
47 |
46
|
biimpd |
|- ( ( M e. _om /\ x e. _om ) -> ( suc M = suc x -> M = x ) ) |
48 |
47
|
3ad2antl1 |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( suc M = suc x -> M = x ) ) |
49 |
25 45 48
|
3syld |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> M = x ) ) |
50 |
|
breq2 |
|- ( M = x -> ( ( A \ { X } ) ~~ M <-> ( A \ { X } ) ~~ x ) ) |
51 |
50
|
biimprcd |
|- ( ( A \ { X } ) ~~ x -> ( M = x -> ( A \ { X } ) ~~ M ) ) |
52 |
49 51
|
sylcom |
|- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> ( A \ { X } ) ~~ M ) ) |
53 |
52
|
rexlimdva |
|- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( E. x e. _om ( A \ { X } ) ~~ x -> ( A \ { X } ) ~~ M ) ) |
54 |
11 53
|
mpd |
|- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |