Description: If a set A is equinumerous to the successor of a natural number M , then A with an element removed is equinumerous to M . See also dif1ennnALT . (Contributed by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1ennn | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnon | |- ( M e. _om -> M e. On ) | |
| 2 | dif1en |  |-  ( ( M e. On /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) | |
| 3 | 1 2 | syl3an1 |  |-  ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |