Description: If a set A is equinumerous to the successor of a natural number M , then A with an element removed is equinumerous to M . See also dif1ennnALT . (Contributed by BTernaryTau, 6-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1ennn | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon | |- ( M e. _om -> M e. On ) |
|
2 | dif1en | |- ( ( M e. On /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |
|
3 | 1 2 | syl3an1 | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |