Metamath Proof Explorer


Theorem dif1ennn

Description: If a set A is equinumerous to the successor of a natural number M , then A with an element removed is equinumerous to M . See also dif1ennnALT . (Contributed by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion dif1ennn
|- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M )

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( M e. _om -> M e. On )
2 dif1en
 |-  ( ( M e. On /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M )
3 1 2 syl3an1
 |-  ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M )