Description: Two ways to say that A is a nonzero number of the set B . (Contributed by Mario Carneiro, 21-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1o | |- ( A e. ( B \ 1o ) <-> ( A e. B /\ A =/= (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | |- 1o = { (/) } |
|
2 | 1 | difeq2i | |- ( B \ 1o ) = ( B \ { (/) } ) |
3 | 2 | eleq2i | |- ( A e. ( B \ 1o ) <-> A e. ( B \ { (/) } ) ) |
4 | eldifsn | |- ( A e. ( B \ { (/) } ) <-> ( A e. B /\ A =/= (/) ) ) |
|
5 | 3 4 | bitri | |- ( A e. ( B \ 1o ) <-> ( A e. B /\ A =/= (/) ) ) |