Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dif20el | |- ( A e. ( On \ 2o ) -> (/) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ondif2 | |- ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) ) |
|
2 | 1 | simprbi | |- ( A e. ( On \ 2o ) -> 1o e. A ) |
3 | 0lt1o | |- (/) e. 1o |
|
4 | eldifi | |- ( A e. ( On \ 2o ) -> A e. On ) |
|
5 | ontr1 | |- ( A e. On -> ( ( (/) e. 1o /\ 1o e. A ) -> (/) e. A ) ) |
|
6 | 4 5 | syl | |- ( A e. ( On \ 2o ) -> ( ( (/) e. 1o /\ 1o e. A ) -> (/) e. A ) ) |
7 | 3 6 | mpani | |- ( A e. ( On \ 2o ) -> ( 1o e. A -> (/) e. A ) ) |
8 | 2 7 | mpd | |- ( A e. ( On \ 2o ) -> (/) e. A ) |