Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif32 | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uncom | |- ( B u. C ) = ( C u. B ) | |
| 2 | 1 | difeq2i | |- ( A \ ( B u. C ) ) = ( A \ ( C u. B ) ) | 
| 3 | difun1 | |- ( A \ ( B u. C ) ) = ( ( A \ B ) \ C ) | |
| 4 | difun1 | |- ( A \ ( C u. B ) ) = ( ( A \ C ) \ B ) | |
| 5 | 2 3 4 | 3eqtr3i | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) |