Step |
Hyp |
Ref |
Expression |
1 |
|
df-clab |
|- ( y e. { x | ( ph /\ -. ps ) } <-> [ y / x ] ( ph /\ -. ps ) ) |
2 |
|
sban |
|- ( [ y / x ] ( ph /\ -. ps ) <-> ( [ y / x ] ph /\ [ y / x ] -. ps ) ) |
3 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
4 |
3
|
bicomi |
|- ( [ y / x ] ph <-> y e. { x | ph } ) |
5 |
|
sbn |
|- ( [ y / x ] -. ps <-> -. [ y / x ] ps ) |
6 |
|
df-clab |
|- ( y e. { x | ps } <-> [ y / x ] ps ) |
7 |
5 6
|
xchbinxr |
|- ( [ y / x ] -. ps <-> -. y e. { x | ps } ) |
8 |
4 7
|
anbi12i |
|- ( ( [ y / x ] ph /\ [ y / x ] -. ps ) <-> ( y e. { x | ph } /\ -. y e. { x | ps } ) ) |
9 |
1 2 8
|
3bitrri |
|- ( ( y e. { x | ph } /\ -. y e. { x | ps } ) <-> y e. { x | ( ph /\ -. ps ) } ) |
10 |
9
|
difeqri |
|- ( { x | ph } \ { x | ps } ) = { x | ( ph /\ -. ps ) } |