Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | difabs | |- ( ( A \ B ) \ B ) = ( A \ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun1 | |- ( A \ ( B u. B ) ) = ( ( A \ B ) \ B ) |
|
2 | unidm | |- ( B u. B ) = B |
|
3 | 2 | difeq2i | |- ( A \ ( B u. B ) ) = ( A \ B ) |
4 | 1 3 | eqtr3i | |- ( ( A \ B ) \ B ) = ( A \ B ) |