Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difcom | |- ( ( A \ B ) C_ C <-> ( A \ C ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( B u. C ) = ( C u. B ) |
|
| 2 | 1 | sseq2i | |- ( A C_ ( B u. C ) <-> A C_ ( C u. B ) ) |
| 3 | ssundif | |- ( A C_ ( B u. C ) <-> ( A \ B ) C_ C ) |
|
| 4 | ssundif | |- ( A C_ ( C u. B ) <-> ( A \ C ) C_ B ) |
|
| 5 | 2 3 4 | 3bitr3i | |- ( ( A \ B ) C_ C <-> ( A \ C ) C_ B ) |