Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | difcom | |- ( ( A \ B ) C_ C <-> ( A \ C ) C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom | |- ( B u. C ) = ( C u. B ) |
|
2 | 1 | sseq2i | |- ( A C_ ( B u. C ) <-> A C_ ( C u. B ) ) |
3 | ssundif | |- ( A C_ ( B u. C ) <-> ( A \ B ) C_ C ) |
|
4 | ssundif | |- ( A C_ ( C u. B ) <-> ( A \ C ) C_ B ) |
|
5 | 2 3 4 | 3bitr3i | |- ( ( A \ B ) C_ C <-> ( A \ C ) C_ B ) |