Description: Double class difference. Exercise 11 of TakeutiZaring p. 22. (Contributed by NM, 17-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | difdif | |- ( A \ ( B \ A ) ) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.45im | |- ( x e. A <-> ( x e. A /\ ( x e. B -> x e. A ) ) ) |
|
2 | iman | |- ( ( x e. B -> x e. A ) <-> -. ( x e. B /\ -. x e. A ) ) |
|
3 | eldif | |- ( x e. ( B \ A ) <-> ( x e. B /\ -. x e. A ) ) |
|
4 | 2 3 | xchbinxr | |- ( ( x e. B -> x e. A ) <-> -. x e. ( B \ A ) ) |
5 | 4 | anbi2i | |- ( ( x e. A /\ ( x e. B -> x e. A ) ) <-> ( x e. A /\ -. x e. ( B \ A ) ) ) |
6 | 1 5 | bitr2i | |- ( ( x e. A /\ -. x e. ( B \ A ) ) <-> x e. A ) |
7 | 6 | difeqri | |- ( A \ ( B \ A ) ) = A |