Metamath Proof Explorer


Theorem difdif

Description: Double class difference. Exercise 11 of TakeutiZaring p. 22. (Contributed by NM, 17-May-1998)

Ref Expression
Assertion difdif
|- ( A \ ( B \ A ) ) = A

Proof

Step Hyp Ref Expression
1 pm4.45im
 |-  ( x e. A <-> ( x e. A /\ ( x e. B -> x e. A ) ) )
2 iman
 |-  ( ( x e. B -> x e. A ) <-> -. ( x e. B /\ -. x e. A ) )
3 eldif
 |-  ( x e. ( B \ A ) <-> ( x e. B /\ -. x e. A ) )
4 2 3 xchbinxr
 |-  ( ( x e. B -> x e. A ) <-> -. x e. ( B \ A ) )
5 4 anbi2i
 |-  ( ( x e. A /\ ( x e. B -> x e. A ) ) <-> ( x e. A /\ -. x e. ( B \ A ) ) )
6 1 5 bitr2i
 |-  ( ( x e. A /\ -. x e. ( B \ A ) ) <-> x e. A )
7 6 difeqri
 |-  ( A \ ( B \ A ) ) = A