Metamath Proof Explorer


Theorem difdif2

Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017)

Ref Expression
Assertion difdif2
|- ( A \ ( B \ C ) ) = ( ( A \ B ) u. ( A i^i C ) )

Proof

Step Hyp Ref Expression
1 difindi
 |-  ( A \ ( B i^i ( _V \ C ) ) ) = ( ( A \ B ) u. ( A \ ( _V \ C ) ) )
2 invdif
 |-  ( B i^i ( _V \ C ) ) = ( B \ C )
3 2 eqcomi
 |-  ( B \ C ) = ( B i^i ( _V \ C ) )
4 3 difeq2i
 |-  ( A \ ( B \ C ) ) = ( A \ ( B i^i ( _V \ C ) ) )
5 dfin2
 |-  ( A i^i C ) = ( A \ ( _V \ C ) )
6 5 uneq2i
 |-  ( ( A \ B ) u. ( A i^i C ) ) = ( ( A \ B ) u. ( A \ ( _V \ C ) ) )
7 1 4 6 3eqtr4i
 |-  ( A \ ( B \ C ) ) = ( ( A \ B ) u. ( A i^i C ) )