Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difdif2 | |- ( A \ ( B \ C ) ) = ( ( A \ B ) u. ( A i^i C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difindi | |- ( A \ ( B i^i ( _V \ C ) ) ) = ( ( A \ B ) u. ( A \ ( _V \ C ) ) ) |
|
2 | invdif | |- ( B i^i ( _V \ C ) ) = ( B \ C ) |
|
3 | 2 | eqcomi | |- ( B \ C ) = ( B i^i ( _V \ C ) ) |
4 | 3 | difeq2i | |- ( A \ ( B \ C ) ) = ( A \ ( B i^i ( _V \ C ) ) ) |
5 | dfin2 | |- ( A i^i C ) = ( A \ ( _V \ C ) ) |
|
6 | 5 | uneq2i | |- ( ( A \ B ) u. ( A i^i C ) ) = ( ( A \ B ) u. ( A \ ( _V \ C ) ) ) |
7 | 1 4 6 | 3eqtr4i | |- ( A \ ( B \ C ) ) = ( ( A \ B ) u. ( A i^i C ) ) |