Step |
Hyp |
Ref |
Expression |
1 |
|
dif32 |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) |
2 |
|
invdif |
|- ( ( A \ C ) i^i ( _V \ B ) ) = ( ( A \ C ) \ B ) |
3 |
1 2
|
eqtr4i |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) i^i ( _V \ B ) ) |
4 |
|
un0 |
|- ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) = ( ( A \ C ) i^i ( _V \ B ) ) |
5 |
3 4
|
eqtr4i |
|- ( ( A \ B ) \ C ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) |
6 |
|
indi |
|- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. ( ( A \ C ) i^i C ) ) |
7 |
|
disjdif |
|- ( C i^i ( A \ C ) ) = (/) |
8 |
|
incom |
|- ( C i^i ( A \ C ) ) = ( ( A \ C ) i^i C ) |
9 |
7 8
|
eqtr3i |
|- (/) = ( ( A \ C ) i^i C ) |
10 |
9
|
uneq2i |
|- ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. ( ( A \ C ) i^i C ) ) |
11 |
6 10
|
eqtr4i |
|- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) |
12 |
5 11
|
eqtr4i |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) |
13 |
|
ddif |
|- ( _V \ ( _V \ C ) ) = C |
14 |
13
|
uneq2i |
|- ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) = ( ( _V \ B ) u. C ) |
15 |
|
indm |
|- ( _V \ ( B i^i ( _V \ C ) ) ) = ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) |
16 |
|
invdif |
|- ( B i^i ( _V \ C ) ) = ( B \ C ) |
17 |
16
|
difeq2i |
|- ( _V \ ( B i^i ( _V \ C ) ) ) = ( _V \ ( B \ C ) ) |
18 |
15 17
|
eqtr3i |
|- ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) = ( _V \ ( B \ C ) ) |
19 |
14 18
|
eqtr3i |
|- ( ( _V \ B ) u. C ) = ( _V \ ( B \ C ) ) |
20 |
19
|
ineq2i |
|- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( A \ C ) i^i ( _V \ ( B \ C ) ) ) |
21 |
|
invdif |
|- ( ( A \ C ) i^i ( _V \ ( B \ C ) ) ) = ( ( A \ C ) \ ( B \ C ) ) |
22 |
12 20 21
|
3eqtri |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) \ ( B \ C ) ) |