| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dif32 |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) |
| 2 |
|
invdif |
|- ( ( A \ C ) i^i ( _V \ B ) ) = ( ( A \ C ) \ B ) |
| 3 |
1 2
|
eqtr4i |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) i^i ( _V \ B ) ) |
| 4 |
|
un0 |
|- ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) = ( ( A \ C ) i^i ( _V \ B ) ) |
| 5 |
3 4
|
eqtr4i |
|- ( ( A \ B ) \ C ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) |
| 6 |
|
indi |
|- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. ( ( A \ C ) i^i C ) ) |
| 7 |
|
disjdif |
|- ( C i^i ( A \ C ) ) = (/) |
| 8 |
|
incom |
|- ( C i^i ( A \ C ) ) = ( ( A \ C ) i^i C ) |
| 9 |
7 8
|
eqtr3i |
|- (/) = ( ( A \ C ) i^i C ) |
| 10 |
9
|
uneq2i |
|- ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. ( ( A \ C ) i^i C ) ) |
| 11 |
6 10
|
eqtr4i |
|- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) |
| 12 |
5 11
|
eqtr4i |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) |
| 13 |
|
ddif |
|- ( _V \ ( _V \ C ) ) = C |
| 14 |
13
|
uneq2i |
|- ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) = ( ( _V \ B ) u. C ) |
| 15 |
|
indm |
|- ( _V \ ( B i^i ( _V \ C ) ) ) = ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) |
| 16 |
|
invdif |
|- ( B i^i ( _V \ C ) ) = ( B \ C ) |
| 17 |
16
|
difeq2i |
|- ( _V \ ( B i^i ( _V \ C ) ) ) = ( _V \ ( B \ C ) ) |
| 18 |
15 17
|
eqtr3i |
|- ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) = ( _V \ ( B \ C ) ) |
| 19 |
14 18
|
eqtr3i |
|- ( ( _V \ B ) u. C ) = ( _V \ ( B \ C ) ) |
| 20 |
19
|
ineq2i |
|- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( A \ C ) i^i ( _V \ ( B \ C ) ) ) |
| 21 |
|
invdif |
|- ( ( A \ C ) i^i ( _V \ ( B \ C ) ) ) = ( ( A \ C ) \ ( B \ C ) ) |
| 22 |
12 20 21
|
3eqtri |
|- ( ( A \ B ) \ C ) = ( ( A \ C ) \ ( B \ C ) ) |