Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difelpw | |- ( A e. V -> ( A \ B ) e. ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( A \ B ) C_ A |
|
| 2 | elpw2g | |- ( A e. V -> ( ( A \ B ) e. ~P A <-> ( A \ B ) C_ A ) ) |
|
| 3 | 1 2 | mpbiri | |- ( A e. V -> ( A \ B ) e. ~P A ) |