Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | difelpw | |- ( A e. V -> ( A \ B ) e. ~P A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss | |- ( A \ B ) C_ A |
|
2 | elpw2g | |- ( A e. V -> ( ( A \ B ) e. ~P A <-> ( A \ B ) C_ A ) ) |
|
3 | 1 2 | mpbiri | |- ( A e. V -> ( A \ B ) e. ~P A ) |