Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difeq1 | |- ( A = B -> ( A \ C ) = ( B \ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq | |- ( A = B -> { x e. A | -. x e. C } = { x e. B | -. x e. C } ) |
|
| 2 | dfdif2 | |- ( A \ C ) = { x e. A | -. x e. C } |
|
| 3 | dfdif2 | |- ( B \ C ) = { x e. B | -. x e. C } |
|
| 4 | 1 2 3 | 3eqtr4g | |- ( A = B -> ( A \ C ) = ( B \ C ) ) |