Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | difeq1 | |- ( A = B -> ( A \ C ) = ( B \ C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq | |- ( A = B -> { x e. A | -. x e. C } = { x e. B | -. x e. C } ) |
|
2 | dfdif2 | |- ( A \ C ) = { x e. A | -. x e. C } |
|
3 | dfdif2 | |- ( B \ C ) = { x e. B | -. x e. C } |
|
4 | 1 2 3 | 3eqtr4g | |- ( A = B -> ( A \ C ) = ( B \ C ) ) |