Metamath Proof Explorer
		
		
		
		Description:  Equality inference for class difference.  (Contributed by NM, 29-Aug-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | difeq1i.1 | |- A = B | 
					
						|  |  | difeq12i.2 | |- C = D | 
				
					|  | Assertion | difeq12i | |- ( A \ C ) = ( B \ D ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difeq1i.1 |  |-  A = B | 
						
							| 2 |  | difeq12i.2 |  |-  C = D | 
						
							| 3 | 1 | difeq1i |  |-  ( A \ C ) = ( B \ C ) | 
						
							| 4 | 2 | difeq2i |  |-  ( B \ C ) = ( B \ D ) | 
						
							| 5 | 3 4 | eqtri |  |-  ( A \ C ) = ( B \ D ) |