Metamath Proof Explorer
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004)
|
|
Ref |
Expression |
|
Hypotheses |
difeq1i.1 |
|- A = B |
|
|
difeq12i.2 |
|- C = D |
|
Assertion |
difeq12i |
|- ( A \ C ) = ( B \ D ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
difeq1i.1 |
|- A = B |
2 |
|
difeq12i.2 |
|- C = D |
3 |
1
|
difeq1i |
|- ( A \ C ) = ( B \ C ) |
4 |
2
|
difeq2i |
|- ( B \ C ) = ( B \ D ) |
5 |
3 4
|
eqtri |
|- ( A \ C ) = ( B \ D ) |