Description: Inference from membership to difference. (Contributed by NM, 17-May-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | difeqri.1 | |- ( ( x e. A /\ -. x e. B ) <-> x e. C ) |
|
| Assertion | difeqri | |- ( A \ B ) = C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeqri.1 | |- ( ( x e. A /\ -. x e. B ) <-> x e. C ) |
|
| 2 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 3 | 2 1 | bitri | |- ( x e. ( A \ B ) <-> x e. C ) |
| 4 | 3 | eqriv | |- ( A \ B ) = C |