Description: Existence of a difference. (Contributed by SN, 16-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | difexd.1 | |- ( ph -> A e. V ) |
|
Assertion | difexd | |- ( ph -> ( A \ B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | |- ( ph -> A e. V ) |
|
2 | difexg | |- ( A e. V -> ( A \ B ) e. _V ) |
|
3 | 1 2 | syl | |- ( ph -> ( A \ B ) e. _V ) |