Metamath Proof Explorer


Theorem difexd

Description: Existence of a difference. (Contributed by SN, 16-Jul-2024)

Ref Expression
Hypothesis difexd.1
|- ( ph -> A e. V )
Assertion difexd
|- ( ph -> ( A \ B ) e. _V )

Proof

Step Hyp Ref Expression
1 difexd.1
 |-  ( ph -> A e. V )
2 difexg
 |-  ( A e. V -> ( A \ B ) e. _V )
3 1 2 syl
 |-  ( ph -> ( A \ B ) e. _V )