Metamath Proof Explorer


Theorem difexg

Description: Existence of a difference. (Contributed by NM, 26-May-1998)

Ref Expression
Assertion difexg
|- ( A e. V -> ( A \ B ) e. _V )

Proof

Step Hyp Ref Expression
1 difss
 |-  ( A \ B ) C_ A
2 ssexg
 |-  ( ( ( A \ B ) C_ A /\ A e. V ) -> ( A \ B ) e. _V )
3 1 2 mpan
 |-  ( A e. V -> ( A \ B ) e. _V )