Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
3 |
1 2
|
anim12i |
|- ( ( A e. RR /\ B e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
4 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A e. CC /\ B e. CC ) ) |
5 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
6 |
4 5
|
syl |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) = ( A - B ) ) |
7 |
6
|
eqcomd |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A - B ) = ( A + -u B ) ) |
8 |
7
|
breq2d |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) <-> C < ( A + -u B ) ) ) |
9 |
|
simp3 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> C e. RR ) |
10 |
|
simp1 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> A e. RR ) |
11 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
12 |
11
|
renegcld |
|- ( B e. NN0 -> -u B e. RR ) |
13 |
12
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> -u B e. RR ) |
14 |
10 13
|
readdcld |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) e. RR ) |
15 |
11
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> B e. RR ) |
16 |
10 15
|
readdcld |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + B ) e. RR ) |
17 |
9 14 16
|
3jca |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C e. RR /\ ( A + -u B ) e. RR /\ ( A + B ) e. RR ) ) |
18 |
|
nn0negleid |
|- ( B e. NN0 -> -u B <_ B ) |
19 |
18
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> -u B <_ B ) |
20 |
13 15 10 19
|
leadd2dd |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) <_ ( A + B ) ) |
21 |
17 20
|
lelttrdi |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A + -u B ) -> C < ( A + B ) ) ) |
22 |
8 21
|
sylbid |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) -> C < ( A + B ) ) ) |