| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incom |  |-  ( ( A (,) B ) i^i ( B [,) C ) ) = ( ( B [,) C ) i^i ( A (,) B ) ) | 
						
							| 2 |  | joiniooico |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B <_ C ) ) -> ( ( ( A (,) B ) i^i ( B [,) C ) ) = (/) /\ ( ( A (,) B ) u. ( B [,) C ) ) = ( A (,) C ) ) ) | 
						
							| 3 | 2 | anassrs |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( ( A (,) B ) i^i ( B [,) C ) ) = (/) /\ ( ( A (,) B ) u. ( B [,) C ) ) = ( A (,) C ) ) ) | 
						
							| 4 | 3 | simpld |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( B [,) C ) ) = (/) ) | 
						
							| 5 | 1 4 | eqtr3id |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( B [,) C ) i^i ( A (,) B ) ) = (/) ) | 
						
							| 6 | 3 | simprd |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( A (,) B ) u. ( B [,) C ) ) = ( A (,) C ) ) | 
						
							| 7 |  | uncom |  |-  ( ( B [,) C ) u. ( A (,) B ) ) = ( ( A (,) B ) u. ( B [,) C ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( B [,) C ) u. ( A (,) B ) ) = ( ( A (,) B ) u. ( B [,) C ) ) ) | 
						
							| 9 |  | simpll1 |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> A e. RR* ) | 
						
							| 10 |  | simpl3 |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) -> C e. RR* ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> C e. RR* ) | 
						
							| 12 | 9 | xrleidd |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> A <_ A ) | 
						
							| 13 |  | simpr |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> B <_ C ) | 
						
							| 14 |  | ioossioo |  |-  ( ( ( A e. RR* /\ C e. RR* ) /\ ( A <_ A /\ B <_ C ) ) -> ( A (,) B ) C_ ( A (,) C ) ) | 
						
							| 15 | 9 11 12 13 14 | syl22anc |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( A (,) B ) C_ ( A (,) C ) ) | 
						
							| 16 |  | ssequn2 |  |-  ( ( A (,) B ) C_ ( A (,) C ) <-> ( ( A (,) C ) u. ( A (,) B ) ) = ( A (,) C ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( A (,) C ) u. ( A (,) B ) ) = ( A (,) C ) ) | 
						
							| 18 | 6 8 17 | 3eqtr4d |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( B [,) C ) u. ( A (,) B ) ) = ( ( A (,) C ) u. ( A (,) B ) ) ) | 
						
							| 19 |  | difeq |  |-  ( ( ( A (,) C ) \ ( A (,) B ) ) = ( B [,) C ) <-> ( ( ( B [,) C ) i^i ( A (,) B ) ) = (/) /\ ( ( B [,) C ) u. ( A (,) B ) ) = ( ( A (,) C ) u. ( A (,) B ) ) ) ) | 
						
							| 20 | 5 18 19 | sylanbrc |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ B <_ C ) -> ( ( A (,) C ) \ ( A (,) B ) ) = ( B [,) C ) ) | 
						
							| 21 |  | simpll1 |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> A e. RR* ) | 
						
							| 22 |  | simpl2 |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) -> B e. RR* ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> B e. RR* ) | 
						
							| 24 | 21 | xrleidd |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> A <_ A ) | 
						
							| 25 | 10 | adantr |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> C e. RR* ) | 
						
							| 26 |  | simpr |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> C < B ) | 
						
							| 27 | 25 23 26 | xrltled |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> C <_ B ) | 
						
							| 28 |  | ioossioo |  |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ A /\ C <_ B ) ) -> ( A (,) C ) C_ ( A (,) B ) ) | 
						
							| 29 | 21 23 24 27 28 | syl22anc |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> ( A (,) C ) C_ ( A (,) B ) ) | 
						
							| 30 |  | ssdif0 |  |-  ( ( A (,) C ) C_ ( A (,) B ) <-> ( ( A (,) C ) \ ( A (,) B ) ) = (/) ) | 
						
							| 31 | 29 30 | sylib |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> ( ( A (,) C ) \ ( A (,) B ) ) = (/) ) | 
						
							| 32 |  | ico0 |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( ( B [,) C ) = (/) <-> C <_ B ) ) | 
						
							| 33 | 32 | biimpar |  |-  ( ( ( B e. RR* /\ C e. RR* ) /\ C <_ B ) -> ( B [,) C ) = (/) ) | 
						
							| 34 | 23 25 27 33 | syl21anc |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> ( B [,) C ) = (/) ) | 
						
							| 35 | 31 34 | eqtr4d |  |-  ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) /\ C < B ) -> ( ( A (,) C ) \ ( A (,) B ) ) = ( B [,) C ) ) | 
						
							| 36 |  | xrlelttric |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( B <_ C \/ C < B ) ) | 
						
							| 37 | 22 10 36 | syl2anc |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) -> ( B <_ C \/ C < B ) ) | 
						
							| 38 | 20 35 37 | mpjaodan |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) -> ( ( A (,) C ) \ ( A (,) B ) ) = ( B [,) C ) ) |