| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscld.1 |
|- X = U. J |
| 2 |
|
elssuni |
|- ( A e. J -> A C_ U. J ) |
| 3 |
2 1
|
sseqtrrdi |
|- ( A e. J -> A C_ X ) |
| 4 |
3
|
adantr |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> A C_ X ) |
| 5 |
|
dfss2 |
|- ( A C_ X <-> ( A i^i X ) = A ) |
| 6 |
4 5
|
sylib |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A i^i X ) = A ) |
| 7 |
6
|
difeq1d |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( ( A i^i X ) \ B ) = ( A \ B ) ) |
| 8 |
|
indif2 |
|- ( A i^i ( X \ B ) ) = ( ( A i^i X ) \ B ) |
| 9 |
|
cldrcl |
|- ( B e. ( Clsd ` J ) -> J e. Top ) |
| 10 |
9
|
adantl |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> J e. Top ) |
| 11 |
|
simpl |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> A e. J ) |
| 12 |
1
|
cldopn |
|- ( B e. ( Clsd ` J ) -> ( X \ B ) e. J ) |
| 13 |
12
|
adantl |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( X \ B ) e. J ) |
| 14 |
|
inopn |
|- ( ( J e. Top /\ A e. J /\ ( X \ B ) e. J ) -> ( A i^i ( X \ B ) ) e. J ) |
| 15 |
10 11 13 14
|
syl3anc |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A i^i ( X \ B ) ) e. J ) |
| 16 |
8 15
|
eqeltrrid |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( ( A i^i X ) \ B ) e. J ) |
| 17 |
7 16
|
eqeltrrd |
|- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A \ B ) e. J ) |