Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difpr | |- ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pr |  |-  { B , C } = ( { B } u. { C } ) | |
| 2 | 1 | difeq2i |  |-  ( A \ { B , C } ) = ( A \ ( { B } u. { C } ) ) | 
| 3 | difun1 |  |-  ( A \ ( { B } u. { C } ) ) = ( ( A \ { B } ) \ { C } ) | |
| 4 | 2 3 | eqtri |  |-  ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) |