Metamath Proof Explorer


Theorem difpr

Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018)

Ref Expression
Assertion difpr
|- ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } )

Proof

Step Hyp Ref Expression
1 df-pr
 |-  { B , C } = ( { B } u. { C } )
2 1 difeq2i
 |-  ( A \ { B , C } ) = ( A \ ( { B } u. { C } ) )
3 difun1
 |-  ( A \ ( { B } u. { C } ) ) = ( ( A \ { B } ) \ { C } )
4 2 3 eqtri
 |-  ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } )