Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | difpr | |- ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr | |- { B , C } = ( { B } u. { C } ) |
|
2 | 1 | difeq2i | |- ( A \ { B , C } ) = ( A \ ( { B } u. { C } ) ) |
3 | difun1 | |- ( A \ ( { B } u. { C } ) ) = ( ( A \ { B } ) \ { C } ) |
|
4 | 2 3 | eqtri | |- ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) |