Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difprsn2 | |- ( A =/= B -> ( { A , B } \ { B } ) = { A } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom | |- { A , B } = { B , A } |
|
2 | 1 | difeq1i | |- ( { A , B } \ { B } ) = ( { B , A } \ { B } ) |
3 | necom | |- ( A =/= B <-> B =/= A ) |
|
4 | difprsn1 | |- ( B =/= A -> ( { B , A } \ { B } ) = { A } ) |
|
5 | 3 4 | sylbi | |- ( A =/= B -> ( { B , A } \ { B } ) = { A } ) |
6 | 2 5 | eqtrid | |- ( A =/= B -> ( { A , B } \ { B } ) = { A } ) |