Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difprsn2 | |- ( A =/= B -> ( { A , B } \ { B } ) = { A } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prcom |  |-  { A , B } = { B , A } | |
| 2 | 1 | difeq1i |  |-  ( { A , B } \ { B } ) = ( { B , A } \ { B } ) | 
| 3 | necom | |- ( A =/= B <-> B =/= A ) | |
| 4 | difprsn1 |  |-  ( B =/= A -> ( { B , A } \ { B } ) = { A } ) | |
| 5 | 3 4 | sylbi |  |-  ( A =/= B -> ( { B , A } \ { B } ) = { A } ) | 
| 6 | 2 5 | eqtrid |  |-  ( A =/= B -> ( { A , B } \ { B } ) = { A } ) |