Metamath Proof Explorer


Theorem difrab0eq

Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)

Ref Expression
Assertion difrab0eq
|- ( ( V \ { x e. V | ph } ) = (/) <-> V = { x e. V | ph } )

Proof

Step Hyp Ref Expression
1 ssdif0
 |-  ( V C_ { x e. V | ph } <-> ( V \ { x e. V | ph } ) = (/) )
2 ssrabeq
 |-  ( V C_ { x e. V | ph } <-> V = { x e. V | ph } )
3 1 2 bitr3i
 |-  ( ( V \ { x e. V | ph } ) = (/) <-> V = { x e. V | ph } )