Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difrab0eq | |- ( ( V \ { x e. V | ph } ) = (/) <-> V = { x e. V | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | |- ( V C_ { x e. V | ph } <-> ( V \ { x e. V | ph } ) = (/) ) |
|
| 2 | ssrabeq | |- ( V C_ { x e. V | ph } <-> V = { x e. V | ph } ) |
|
| 3 | 1 2 | bitr3i | |- ( ( V \ { x e. V | ph } ) = (/) <-> V = { x e. V | ph } ) |