| Step |
Hyp |
Ref |
Expression |
| 1 |
|
posdif |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
| 2 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 3 |
2
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 4 |
|
elrp |
|- ( ( B - A ) e. RR+ <-> ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) |
| 5 |
4
|
baib |
|- ( ( B - A ) e. RR -> ( ( B - A ) e. RR+ <-> 0 < ( B - A ) ) ) |
| 6 |
3 5
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) e. RR+ <-> 0 < ( B - A ) ) ) |
| 7 |
1 6
|
bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |