Step |
Hyp |
Ref |
Expression |
1 |
|
posdif |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
2 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
3 |
2
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
4 |
|
elrp |
|- ( ( B - A ) e. RR+ <-> ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) |
5 |
4
|
baib |
|- ( ( B - A ) e. RR -> ( ( B - A ) e. RR+ <-> 0 < ( B - A ) ) ) |
6 |
3 5
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) e. RR+ <-> 0 < ( B - A ) ) ) |
7 |
1 6
|
bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |