Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | difsn | |- ( -. A e. B -> ( B \ { A } ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | |- ( x e. ( B \ { A } ) <-> ( x e. B /\ x =/= A ) ) |
|
2 | simpl | |- ( ( x e. B /\ x =/= A ) -> x e. B ) |
|
3 | nelelne | |- ( -. A e. B -> ( x e. B -> x =/= A ) ) |
|
4 | 3 | ancld | |- ( -. A e. B -> ( x e. B -> ( x e. B /\ x =/= A ) ) ) |
5 | 2 4 | impbid2 | |- ( -. A e. B -> ( ( x e. B /\ x =/= A ) <-> x e. B ) ) |
6 | 1 5 | bitrid | |- ( -. A e. B -> ( x e. ( B \ { A } ) <-> x e. B ) ) |
7 | 6 | eqrdv | |- ( -. A e. B -> ( B \ { A } ) = B ) |