Description: ( B \ { A } ) equals B if and only if A is not a member of B . Generalization of difsn . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difsnb | |- ( -. A e. B <-> ( B \ { A } ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn | |- ( -. A e. B -> ( B \ { A } ) = B ) |
|
2 | neldifsnd | |- ( A e. B -> -. A e. ( B \ { A } ) ) |
|
3 | nelne1 | |- ( ( A e. B /\ -. A e. ( B \ { A } ) ) -> B =/= ( B \ { A } ) ) |
|
4 | 2 3 | mpdan | |- ( A e. B -> B =/= ( B \ { A } ) ) |
5 | 4 | necomd | |- ( A e. B -> ( B \ { A } ) =/= B ) |
6 | 5 | necon2bi | |- ( ( B \ { A } ) = B -> -. A e. B ) |
7 | 1 6 | impbii | |- ( -. A e. B <-> ( B \ { A } ) = B ) |