Description: ( B \ { A } ) is a proper subclass of B if and only if A is a member of B . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difsnpss | |- ( A e. B <-> ( B \ { A } ) C. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb | |- ( A e. B <-> -. -. A e. B ) |
|
2 | difss | |- ( B \ { A } ) C_ B |
|
3 | 2 | biantrur | |- ( ( B \ { A } ) =/= B <-> ( ( B \ { A } ) C_ B /\ ( B \ { A } ) =/= B ) ) |
4 | difsnb | |- ( -. A e. B <-> ( B \ { A } ) = B ) |
|
5 | 4 | necon3bbii | |- ( -. -. A e. B <-> ( B \ { A } ) =/= B ) |
6 | df-pss | |- ( ( B \ { A } ) C. B <-> ( ( B \ { A } ) C_ B /\ ( B \ { A } ) =/= B ) ) |
|
7 | 3 5 6 | 3bitr4i | |- ( -. -. A e. B <-> ( B \ { A } ) C. B ) |
8 | 1 7 | bitri | |- ( A e. B <-> ( B \ { A } ) C. B ) |