Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
2 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
3 |
1 2
|
anim12i |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
4 |
3
|
3adant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A e. CC /\ B e. CC ) ) |
5 |
|
subsq |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
6 |
4 5
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
7 |
6
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
8 |
7
|
eqeq2d |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) <-> ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) ) |
9 |
|
simprl |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> C e. Prime ) |
10 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
11 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
12 |
10 11
|
anim12i |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. ZZ /\ B e. ZZ ) ) |
13 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
14 |
12 13
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. ZZ ) |
15 |
14
|
3adant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) e. ZZ ) |
16 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
17 |
16
|
adantl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> B e. RR ) |
18 |
|
1red |
|- ( ( A e. NN0 /\ B e. NN0 ) -> 1 e. RR ) |
19 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
20 |
19
|
adantr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> A e. RR ) |
21 |
17 18 20
|
ltaddsub2d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B + 1 ) < A <-> 1 < ( A - B ) ) ) |
22 |
|
simpr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> B e. NN0 ) |
23 |
20 22 18
|
3jca |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. RR /\ B e. NN0 /\ 1 e. RR ) ) |
24 |
|
difgtsumgt |
|- ( ( A e. RR /\ B e. NN0 /\ 1 e. RR ) -> ( 1 < ( A - B ) -> 1 < ( A + B ) ) ) |
25 |
23 24
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( 1 < ( A - B ) -> 1 < ( A + B ) ) ) |
26 |
21 25
|
sylbid |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B + 1 ) < A -> 1 < ( A + B ) ) ) |
27 |
26
|
3impia |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> 1 < ( A + B ) ) |
28 |
|
eluz2b1 |
|- ( ( A + B ) e. ( ZZ>= ` 2 ) <-> ( ( A + B ) e. ZZ /\ 1 < ( A + B ) ) ) |
29 |
15 27 28
|
sylanbrc |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) e. ( ZZ>= ` 2 ) ) |
30 |
29
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( A + B ) e. ( ZZ>= ` 2 ) ) |
31 |
|
simprr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> D e. NN0 ) |
32 |
9 30 31
|
3jca |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
33 |
32
|
adantr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
34 |
|
zsubcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
35 |
13 34
|
jca |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
36 |
12 35
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
37 |
36
|
3adant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
38 |
|
dvdsmul1 |
|- ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) |
39 |
37 38
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) |
40 |
39
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) |
41 |
|
breq2 |
|- ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> ( ( A + B ) || ( C ^ D ) <-> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
42 |
41
|
adantl |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( ( A + B ) || ( C ^ D ) <-> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
43 |
40 42
|
mpbird |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A + B ) || ( C ^ D ) ) |
44 |
|
dvdsprmpweqnn |
|- ( ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) -> ( ( A + B ) || ( C ^ D ) -> E. m e. NN ( A + B ) = ( C ^ m ) ) ) |
45 |
33 43 44
|
sylc |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> E. m e. NN ( A + B ) = ( C ^ m ) ) |
46 |
|
prmz |
|- ( C e. Prime -> C e. ZZ ) |
47 |
|
iddvdsexp |
|- ( ( C e. ZZ /\ m e. NN ) -> C || ( C ^ m ) ) |
48 |
46 47
|
sylan |
|- ( ( C e. Prime /\ m e. NN ) -> C || ( C ^ m ) ) |
49 |
|
breq2 |
|- ( ( A + B ) = ( C ^ m ) -> ( C || ( A + B ) <-> C || ( C ^ m ) ) ) |
50 |
48 49
|
syl5ibrcom |
|- ( ( C e. Prime /\ m e. NN ) -> ( ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
51 |
50
|
rexlimdva |
|- ( C e. Prime -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
52 |
51
|
adantr |
|- ( ( C e. Prime /\ D e. NN0 ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
53 |
52
|
adantl |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
54 |
53
|
adantr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
55 |
12 34
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A - B ) e. ZZ ) |
56 |
55
|
3adant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) e. ZZ ) |
57 |
21
|
biimp3a |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> 1 < ( A - B ) ) |
58 |
|
eluz2b1 |
|- ( ( A - B ) e. ( ZZ>= ` 2 ) <-> ( ( A - B ) e. ZZ /\ 1 < ( A - B ) ) ) |
59 |
56 57 58
|
sylanbrc |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) e. ( ZZ>= ` 2 ) ) |
60 |
59
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( A - B ) e. ( ZZ>= ` 2 ) ) |
61 |
9 60 31
|
3jca |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
62 |
61
|
adantr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
63 |
|
dvdsmul2 |
|- ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
64 |
37 63
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
65 |
64
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
66 |
|
breq2 |
|- ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> ( ( A - B ) || ( C ^ D ) <-> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
67 |
66
|
adantl |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( ( A - B ) || ( C ^ D ) <-> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
68 |
65 67
|
mpbird |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A - B ) || ( C ^ D ) ) |
69 |
|
dvdsprmpweqnn |
|- ( ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) -> ( ( A - B ) || ( C ^ D ) -> E. n e. NN ( A - B ) = ( C ^ n ) ) ) |
70 |
62 68 69
|
sylc |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> E. n e. NN ( A - B ) = ( C ^ n ) ) |
71 |
|
iddvdsexp |
|- ( ( C e. ZZ /\ n e. NN ) -> C || ( C ^ n ) ) |
72 |
46 71
|
sylan |
|- ( ( C e. Prime /\ n e. NN ) -> C || ( C ^ n ) ) |
73 |
|
breq2 |
|- ( ( A - B ) = ( C ^ n ) -> ( C || ( A - B ) <-> C || ( C ^ n ) ) ) |
74 |
72 73
|
syl5ibrcom |
|- ( ( C e. Prime /\ n e. NN ) -> ( ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
75 |
74
|
rexlimdva |
|- ( C e. Prime -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
76 |
75
|
adantr |
|- ( ( C e. Prime /\ D e. NN0 ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
77 |
76
|
adantl |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
78 |
77
|
adantr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
79 |
46
|
adantr |
|- ( ( C e. Prime /\ D e. NN0 ) -> C e. ZZ ) |
80 |
37 79
|
anim12ci |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. ZZ /\ ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) ) |
81 |
|
3anass |
|- ( ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) <-> ( C e. ZZ /\ ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) ) |
82 |
80 81
|
sylibr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
83 |
|
dvds2sub |
|- ( ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( ( A + B ) - ( A - B ) ) ) ) |
84 |
82 83
|
syl |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( ( A + B ) - ( A - B ) ) ) ) |
85 |
1
|
3ad2ant1 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> A e. CC ) |
86 |
2
|
3ad2ant2 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> B e. CC ) |
87 |
85 86 86
|
pnncand |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
88 |
2
|
2timesd |
|- ( B e. NN0 -> ( 2 x. B ) = ( B + B ) ) |
89 |
88
|
eqcomd |
|- ( B e. NN0 -> ( B + B ) = ( 2 x. B ) ) |
90 |
89
|
3ad2ant2 |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( B + B ) = ( 2 x. B ) ) |
91 |
87 90
|
eqtrd |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) - ( A - B ) ) = ( 2 x. B ) ) |
92 |
91
|
breq2d |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( C || ( ( A + B ) - ( A - B ) ) <-> C || ( 2 x. B ) ) ) |
93 |
92
|
biimpd |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( C || ( ( A + B ) - ( A - B ) ) -> C || ( 2 x. B ) ) ) |
94 |
93
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C || ( ( A + B ) - ( A - B ) ) -> C || ( 2 x. B ) ) ) |
95 |
84 94
|
syld |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( 2 x. B ) ) ) |
96 |
95
|
expcomd |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C || ( A - B ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) |
97 |
96
|
adantr |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C || ( A - B ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) |
98 |
78 97
|
syld |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) |
99 |
70 98
|
mpd |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) |
100 |
54 99
|
syld |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( 2 x. B ) ) ) |
101 |
45 100
|
mpd |
|- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> C || ( 2 x. B ) ) |
102 |
101
|
ex |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> C || ( 2 x. B ) ) ) |
103 |
8 102
|
sylbid |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) -> C || ( 2 x. B ) ) ) |