| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn |  |-  ( A e. NN0 -> A e. CC ) | 
						
							| 2 |  | nn0cn |  |-  ( B e. NN0 -> B e. CC ) | 
						
							| 3 | 1 2 | anim12i |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. CC /\ B e. CC ) ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A e. CC /\ B e. CC ) ) | 
						
							| 5 |  | subsq |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) <-> ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) ) | 
						
							| 9 |  | simprl |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> C e. Prime ) | 
						
							| 10 |  | nn0z |  |-  ( A e. NN0 -> A e. ZZ ) | 
						
							| 11 |  | nn0z |  |-  ( B e. NN0 -> B e. ZZ ) | 
						
							| 12 | 10 11 | anim12i |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. ZZ /\ B e. ZZ ) ) | 
						
							| 13 |  | zaddcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. ZZ ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) e. ZZ ) | 
						
							| 16 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 17 | 16 | adantl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> B e. RR ) | 
						
							| 18 |  | 1red |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> 1 e. RR ) | 
						
							| 19 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> A e. RR ) | 
						
							| 21 | 17 18 20 | ltaddsub2d |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B + 1 ) < A <-> 1 < ( A - B ) ) ) | 
						
							| 22 |  | simpr |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> B e. NN0 ) | 
						
							| 23 | 20 22 18 | 3jca |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. RR /\ B e. NN0 /\ 1 e. RR ) ) | 
						
							| 24 |  | difgtsumgt |  |-  ( ( A e. RR /\ B e. NN0 /\ 1 e. RR ) -> ( 1 < ( A - B ) -> 1 < ( A + B ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( 1 < ( A - B ) -> 1 < ( A + B ) ) ) | 
						
							| 26 | 21 25 | sylbid |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B + 1 ) < A -> 1 < ( A + B ) ) ) | 
						
							| 27 | 26 | 3impia |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> 1 < ( A + B ) ) | 
						
							| 28 |  | eluz2b1 |  |-  ( ( A + B ) e. ( ZZ>= ` 2 ) <-> ( ( A + B ) e. ZZ /\ 1 < ( A + B ) ) ) | 
						
							| 29 | 15 27 28 | sylanbrc |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) e. ( ZZ>= ` 2 ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( A + B ) e. ( ZZ>= ` 2 ) ) | 
						
							| 31 |  | simprr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> D e. NN0 ) | 
						
							| 32 | 9 30 31 | 3jca |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) | 
						
							| 34 |  | zsubcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) | 
						
							| 35 | 13 34 | jca |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) | 
						
							| 36 | 12 35 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) | 
						
							| 38 |  | dvdsmul1 |  |-  ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 40 | 39 | ad2antrr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 41 |  | breq2 |  |-  ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> ( ( A + B ) || ( C ^ D ) <-> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( ( A + B ) || ( C ^ D ) <-> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) ) | 
						
							| 43 | 40 42 | mpbird |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A + B ) || ( C ^ D ) ) | 
						
							| 44 |  | dvdsprmpweqnn |  |-  ( ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) -> ( ( A + B ) || ( C ^ D ) -> E. m e. NN ( A + B ) = ( C ^ m ) ) ) | 
						
							| 45 | 33 43 44 | sylc |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> E. m e. NN ( A + B ) = ( C ^ m ) ) | 
						
							| 46 |  | prmz |  |-  ( C e. Prime -> C e. ZZ ) | 
						
							| 47 |  | iddvdsexp |  |-  ( ( C e. ZZ /\ m e. NN ) -> C || ( C ^ m ) ) | 
						
							| 48 | 46 47 | sylan |  |-  ( ( C e. Prime /\ m e. NN ) -> C || ( C ^ m ) ) | 
						
							| 49 |  | breq2 |  |-  ( ( A + B ) = ( C ^ m ) -> ( C || ( A + B ) <-> C || ( C ^ m ) ) ) | 
						
							| 50 | 48 49 | syl5ibrcom |  |-  ( ( C e. Prime /\ m e. NN ) -> ( ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) | 
						
							| 51 | 50 | rexlimdva |  |-  ( C e. Prime -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( C e. Prime /\ D e. NN0 ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) | 
						
							| 55 | 12 34 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A - B ) e. ZZ ) | 
						
							| 56 | 55 | 3adant3 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) e. ZZ ) | 
						
							| 57 | 21 | biimp3a |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> 1 < ( A - B ) ) | 
						
							| 58 |  | eluz2b1 |  |-  ( ( A - B ) e. ( ZZ>= ` 2 ) <-> ( ( A - B ) e. ZZ /\ 1 < ( A - B ) ) ) | 
						
							| 59 | 56 57 58 | sylanbrc |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) e. ( ZZ>= ` 2 ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( A - B ) e. ( ZZ>= ` 2 ) ) | 
						
							| 61 | 9 60 31 | 3jca |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) | 
						
							| 63 |  | dvdsmul2 |  |-  ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 64 | 37 63 | syl |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 65 | 64 | ad2antrr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) | 
						
							| 66 |  | breq2 |  |-  ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> ( ( A - B ) || ( C ^ D ) <-> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( ( A - B ) || ( C ^ D ) <-> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) ) | 
						
							| 68 | 65 67 | mpbird |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A - B ) || ( C ^ D ) ) | 
						
							| 69 |  | dvdsprmpweqnn |  |-  ( ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) -> ( ( A - B ) || ( C ^ D ) -> E. n e. NN ( A - B ) = ( C ^ n ) ) ) | 
						
							| 70 | 62 68 69 | sylc |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> E. n e. NN ( A - B ) = ( C ^ n ) ) | 
						
							| 71 |  | iddvdsexp |  |-  ( ( C e. ZZ /\ n e. NN ) -> C || ( C ^ n ) ) | 
						
							| 72 | 46 71 | sylan |  |-  ( ( C e. Prime /\ n e. NN ) -> C || ( C ^ n ) ) | 
						
							| 73 |  | breq2 |  |-  ( ( A - B ) = ( C ^ n ) -> ( C || ( A - B ) <-> C || ( C ^ n ) ) ) | 
						
							| 74 | 72 73 | syl5ibrcom |  |-  ( ( C e. Prime /\ n e. NN ) -> ( ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) | 
						
							| 75 | 74 | rexlimdva |  |-  ( C e. Prime -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( C e. Prime /\ D e. NN0 ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) | 
						
							| 79 | 46 | adantr |  |-  ( ( C e. Prime /\ D e. NN0 ) -> C e. ZZ ) | 
						
							| 80 | 37 79 | anim12ci |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. ZZ /\ ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) ) | 
						
							| 81 |  | 3anass |  |-  ( ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) <-> ( C e. ZZ /\ ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) ) | 
						
							| 82 | 80 81 | sylibr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) | 
						
							| 83 |  | dvds2sub |  |-  ( ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( ( A + B ) - ( A - B ) ) ) ) | 
						
							| 84 | 82 83 | syl |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( ( A + B ) - ( A - B ) ) ) ) | 
						
							| 85 | 1 | 3ad2ant1 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> A e. CC ) | 
						
							| 86 | 2 | 3ad2ant2 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> B e. CC ) | 
						
							| 87 | 85 86 86 | pnncand |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) | 
						
							| 88 | 2 | 2timesd |  |-  ( B e. NN0 -> ( 2 x. B ) = ( B + B ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( B e. NN0 -> ( B + B ) = ( 2 x. B ) ) | 
						
							| 90 | 89 | 3ad2ant2 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( B + B ) = ( 2 x. B ) ) | 
						
							| 91 | 87 90 | eqtrd |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) - ( A - B ) ) = ( 2 x. B ) ) | 
						
							| 92 | 91 | breq2d |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( C || ( ( A + B ) - ( A - B ) ) <-> C || ( 2 x. B ) ) ) | 
						
							| 93 | 92 | biimpd |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( C || ( ( A + B ) - ( A - B ) ) -> C || ( 2 x. B ) ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C || ( ( A + B ) - ( A - B ) ) -> C || ( 2 x. B ) ) ) | 
						
							| 95 | 84 94 | syld |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( 2 x. B ) ) ) | 
						
							| 96 | 95 | expcomd |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C || ( A - B ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C || ( A - B ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) | 
						
							| 98 | 78 97 | syld |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) | 
						
							| 99 | 70 98 | mpd |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) | 
						
							| 100 | 54 99 | syld |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( 2 x. B ) ) ) | 
						
							| 101 | 45 100 | mpd |  |-  ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> C || ( 2 x. B ) ) | 
						
							| 102 | 101 | ex |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> C || ( 2 x. B ) ) ) | 
						
							| 103 | 8 102 | sylbid |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) -> C || ( 2 x. B ) ) ) |