Metamath Proof Explorer


Theorem difsymssdifssd

Description: If the symmetric difference is contained in C , so is one of the differences. (Contributed by AV, 17-Aug-2022)

Ref Expression
Hypothesis difsymssdifssd.1
|- ( ph -> ( A /_\ B ) C_ C )
Assertion difsymssdifssd
|- ( ph -> ( A \ B ) C_ C )

Proof

Step Hyp Ref Expression
1 difsymssdifssd.1
 |-  ( ph -> ( A /_\ B ) C_ C )
2 difsssymdif
 |-  ( A \ B ) C_ ( A /_\ B )
3 2 1 sstrid
 |-  ( ph -> ( A \ B ) C_ C )