Description: If the symmetric difference is contained in C , so is one of the differences. (Contributed by AV, 17-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | difsymssdifssd.1 | |- ( ph -> ( A /_\ B ) C_ C ) |
|
Assertion | difsymssdifssd | |- ( ph -> ( A \ B ) C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsymssdifssd.1 | |- ( ph -> ( A /_\ B ) C_ C ) |
|
2 | difsssymdif | |- ( A \ B ) C_ ( A /_\ B ) |
|
3 | 2 1 | sstrid | |- ( ph -> ( A \ B ) C_ C ) |