| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inass |
|- ( ( A i^i ( _V \ B ) ) i^i ( _V \ C ) ) = ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) |
| 2 |
|
invdif |
|- ( ( A i^i ( _V \ B ) ) i^i ( _V \ C ) ) = ( ( A i^i ( _V \ B ) ) \ C ) |
| 3 |
1 2
|
eqtr3i |
|- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( ( A i^i ( _V \ B ) ) \ C ) |
| 4 |
|
undm |
|- ( _V \ ( B u. C ) ) = ( ( _V \ B ) i^i ( _V \ C ) ) |
| 5 |
4
|
ineq2i |
|- ( A i^i ( _V \ ( B u. C ) ) ) = ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) |
| 6 |
|
invdif |
|- ( A i^i ( _V \ ( B u. C ) ) ) = ( A \ ( B u. C ) ) |
| 7 |
5 6
|
eqtr3i |
|- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( A \ ( B u. C ) ) |
| 8 |
3 7
|
eqtr3i |
|- ( ( A i^i ( _V \ B ) ) \ C ) = ( A \ ( B u. C ) ) |
| 9 |
|
invdif |
|- ( A i^i ( _V \ B ) ) = ( A \ B ) |
| 10 |
9
|
difeq1i |
|- ( ( A i^i ( _V \ B ) ) \ C ) = ( ( A \ B ) \ C ) |
| 11 |
8 10
|
eqtr3i |
|- ( A \ ( B u. C ) ) = ( ( A \ B ) \ C ) |