Description: Absorption of union by difference. Theorem 36 of Suppes p. 29. (Contributed by NM, 19-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difun2 | |- ( ( A u. B ) \ B ) = ( A \ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir | |- ( ( A u. B ) \ B ) = ( ( A \ B ) u. ( B \ B ) ) |
|
| 2 | difid | |- ( B \ B ) = (/) |
|
| 3 | 2 | uneq2i | |- ( ( A \ B ) u. ( B \ B ) ) = ( ( A \ B ) u. (/) ) |
| 4 | un0 | |- ( ( A \ B ) u. (/) ) = ( A \ B ) |
|
| 5 | 1 3 4 | 3eqtri | |- ( ( A u. B ) \ B ) = ( A \ B ) |