Description: Absorption of union by difference. Theorem 36 of Suppes p. 29. (Contributed by NM, 19-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | difun2 | |- ( ( A u. B ) \ B ) = ( A \ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundir | |- ( ( A u. B ) \ B ) = ( ( A \ B ) u. ( B \ B ) ) |
|
2 | difid | |- ( B \ B ) = (/) |
|
3 | 2 | uneq2i | |- ( ( A \ B ) u. ( B \ B ) ) = ( ( A \ B ) u. (/) ) |
4 | un0 | |- ( ( A \ B ) u. (/) ) = ( A \ B ) |
|
5 | 1 3 4 | 3eqtri | |- ( ( A u. B ) \ B ) = ( A \ B ) |