Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difundir | |- ( ( A u. B ) \ C ) = ( ( A \ C ) u. ( B \ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir | |- ( ( A u. B ) i^i ( _V \ C ) ) = ( ( A i^i ( _V \ C ) ) u. ( B i^i ( _V \ C ) ) ) |
|
| 2 | invdif | |- ( ( A u. B ) i^i ( _V \ C ) ) = ( ( A u. B ) \ C ) |
|
| 3 | invdif | |- ( A i^i ( _V \ C ) ) = ( A \ C ) |
|
| 4 | invdif | |- ( B i^i ( _V \ C ) ) = ( B \ C ) |
|
| 5 | 3 4 | uneq12i | |- ( ( A i^i ( _V \ C ) ) u. ( B i^i ( _V \ C ) ) ) = ( ( A \ C ) u. ( B \ C ) ) |
| 6 | 1 2 5 | 3eqtr3i | |- ( ( A u. B ) \ C ) = ( ( A \ C ) u. ( B \ C ) ) |