Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difxp1 | |- ( ( A \ B ) X. C ) = ( ( A X. C ) \ ( B X. C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difxp | |- ( ( A X. C ) \ ( B X. C ) ) = ( ( ( A \ B ) X. C ) u. ( A X. ( C \ C ) ) ) | |
| 2 | difid | |- ( C \ C ) = (/) | |
| 3 | 2 | xpeq2i | |- ( A X. ( C \ C ) ) = ( A X. (/) ) | 
| 4 | xp0 | |- ( A X. (/) ) = (/) | |
| 5 | 3 4 | eqtri | |- ( A X. ( C \ C ) ) = (/) | 
| 6 | 5 | uneq2i | |- ( ( ( A \ B ) X. C ) u. ( A X. ( C \ C ) ) ) = ( ( ( A \ B ) X. C ) u. (/) ) | 
| 7 | un0 | |- ( ( ( A \ B ) X. C ) u. (/) ) = ( ( A \ B ) X. C ) | |
| 8 | 1 6 7 | 3eqtrri | |- ( ( A \ B ) X. C ) = ( ( A X. C ) \ ( B X. C ) ) |