| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difxp |  |-  ( ( A X. B ) \ ( A X. C ) ) = ( ( ( A \ A ) X. B ) u. ( A X. ( B \ C ) ) ) | 
						
							| 2 |  | difid |  |-  ( A \ A ) = (/) | 
						
							| 3 | 2 | xpeq1i |  |-  ( ( A \ A ) X. B ) = ( (/) X. B ) | 
						
							| 4 |  | 0xp |  |-  ( (/) X. B ) = (/) | 
						
							| 5 | 3 4 | eqtri |  |-  ( ( A \ A ) X. B ) = (/) | 
						
							| 6 | 5 | uneq1i |  |-  ( ( ( A \ A ) X. B ) u. ( A X. ( B \ C ) ) ) = ( (/) u. ( A X. ( B \ C ) ) ) | 
						
							| 7 |  | uncom |  |-  ( (/) u. ( A X. ( B \ C ) ) ) = ( ( A X. ( B \ C ) ) u. (/) ) | 
						
							| 8 |  | un0 |  |-  ( ( A X. ( B \ C ) ) u. (/) ) = ( A X. ( B \ C ) ) | 
						
							| 9 | 7 8 | eqtri |  |-  ( (/) u. ( A X. ( B \ C ) ) ) = ( A X. ( B \ C ) ) | 
						
							| 10 | 1 6 9 | 3eqtrri |  |-  ( A X. ( B \ C ) ) = ( ( A X. B ) \ ( A X. C ) ) |