Step |
Hyp |
Ref |
Expression |
1 |
|
difxp |
|- ( ( A X. B ) \ ( A X. C ) ) = ( ( ( A \ A ) X. B ) u. ( A X. ( B \ C ) ) ) |
2 |
|
difid |
|- ( A \ A ) = (/) |
3 |
2
|
xpeq1i |
|- ( ( A \ A ) X. B ) = ( (/) X. B ) |
4 |
|
0xp |
|- ( (/) X. B ) = (/) |
5 |
3 4
|
eqtri |
|- ( ( A \ A ) X. B ) = (/) |
6 |
5
|
uneq1i |
|- ( ( ( A \ A ) X. B ) u. ( A X. ( B \ C ) ) ) = ( (/) u. ( A X. ( B \ C ) ) ) |
7 |
|
uncom |
|- ( (/) u. ( A X. ( B \ C ) ) ) = ( ( A X. ( B \ C ) ) u. (/) ) |
8 |
|
un0 |
|- ( ( A X. ( B \ C ) ) u. (/) ) = ( A X. ( B \ C ) ) |
9 |
7 8
|
eqtri |
|- ( (/) u. ( A X. ( B \ C ) ) ) = ( A X. ( B \ C ) ) |
10 |
1 6 9
|
3eqtrri |
|- ( A X. ( B \ C ) ) = ( ( A X. B ) \ ( A X. C ) ) |