| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 2 |  | nnnn0 |  |-  ( K e. NN -> K e. NN0 ) | 
						
							| 3 |  | reexpcl |  |-  ( ( B e. RR /\ K e. NN0 ) -> ( B ^ K ) e. RR ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. RR ) | 
						
							| 5 |  | remulcl |  |-  ( ( ( B ^ K ) e. RR /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) | 
						
							| 6 | 4 5 | stoic3 |  |-  ( ( B e. NN /\ K e. NN /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) | 
						
							| 7 | 6 | 3comr |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( B ^ K ) x. A ) e. RR ) | 
						
							| 8 |  | reflcl |  |-  ( ( ( B ^ K ) x. A ) e. RR -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) | 
						
							| 10 |  | nnrp |  |-  ( B e. NN -> B e. RR+ ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> B e. RR+ ) | 
						
							| 12 |  | modval |  |-  ( ( ( |_ ` ( ( B ^ K ) x. A ) ) e. RR /\ B e. RR+ ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) ) | 
						
							| 14 |  | simp2 |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> B e. NN ) | 
						
							| 15 |  | fldiv |  |-  ( ( ( ( B ^ K ) x. A ) e. RR /\ B e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) ) | 
						
							| 16 | 7 14 15 | syl2anc |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) ) | 
						
							| 17 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 18 |  | expcl |  |-  ( ( B e. CC /\ K e. NN0 ) -> ( B ^ K ) e. CC ) | 
						
							| 19 | 17 2 18 | syl2an |  |-  ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. CC ) | 
						
							| 20 | 19 | 3adant1 |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B ^ K ) e. CC ) | 
						
							| 21 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> A e. CC ) | 
						
							| 23 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 24 | 17 23 | jca |  |-  ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 25 | 24 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 26 |  | div23 |  |-  ( ( ( B ^ K ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( ( B ^ K ) / B ) x. A ) ) | 
						
							| 27 | 20 22 25 26 | syl3anc |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( ( B ^ K ) / B ) x. A ) ) | 
						
							| 28 |  | nnz |  |-  ( K e. NN -> K e. ZZ ) | 
						
							| 29 |  | expm1 |  |-  ( ( B e. CC /\ B =/= 0 /\ K e. ZZ ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) | 
						
							| 30 | 17 23 28 29 | syl2an3an |  |-  ( ( B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) | 
						
							| 31 | 30 | 3adant1 |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( B ^ ( K - 1 ) ) x. A ) = ( ( ( B ^ K ) / B ) x. A ) ) | 
						
							| 33 | 27 32 | eqtr4d |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( B ^ ( K - 1 ) ) x. A ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) = ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) | 
						
							| 35 | 16 34 | eqtrd |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) = ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) | 
						
							| 38 | 13 37 | eqtrd |  |-  ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |