Metamath Proof Explorer


Theorem dih0bN

Description: A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dih0b.b
|- B = ( Base ` K )
dih0b.h
|- H = ( LHyp ` K )
dih0b.o
|- .0. = ( 0. ` K )
dih0b.i
|- I = ( ( DIsoH ` K ) ` W )
dih0b.u
|- U = ( ( DVecH ` K ) ` W )
dih0b.z
|- Z = ( 0g ` U )
dih0b.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dih0b.x
|- ( ph -> X e. B )
Assertion dih0bN
|- ( ph -> ( X = .0. <-> ( I ` X ) = { Z } ) )

Proof

Step Hyp Ref Expression
1 dih0b.b
 |-  B = ( Base ` K )
2 dih0b.h
 |-  H = ( LHyp ` K )
3 dih0b.o
 |-  .0. = ( 0. ` K )
4 dih0b.i
 |-  I = ( ( DIsoH ` K ) ` W )
5 dih0b.u
 |-  U = ( ( DVecH ` K ) ` W )
6 dih0b.z
 |-  Z = ( 0g ` U )
7 dih0b.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 dih0b.x
 |-  ( ph -> X e. B )
9 7 simpld
 |-  ( ph -> K e. HL )
10 hlop
 |-  ( K e. HL -> K e. OP )
11 1 3 op0cl
 |-  ( K e. OP -> .0. e. B )
12 9 10 11 3syl
 |-  ( ph -> .0. e. B )
13 1 2 4 dih11
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ .0. e. B ) -> ( ( I ` X ) = ( I ` .0. ) <-> X = .0. ) )
14 7 8 12 13 syl3anc
 |-  ( ph -> ( ( I ` X ) = ( I ` .0. ) <-> X = .0. ) )
15 3 2 4 5 6 dih0
 |-  ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = { Z } )
16 7 15 syl
 |-  ( ph -> ( I ` .0. ) = { Z } )
17 16 eqeq2d
 |-  ( ph -> ( ( I ` X ) = ( I ` .0. ) <-> ( I ` X ) = { Z } ) )
18 14 17 bitr3d
 |-  ( ph -> ( X = .0. <-> ( I ` X ) = { Z } ) )