| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih2dimb.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dih2dimb.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dih2dimb.a |
|- A = ( Atoms ` K ) |
| 4 |
|
dih2dimb.h |
|- H = ( LHyp ` K ) |
| 5 |
|
dih2dimb.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
dih2dimb.s |
|- .(+) = ( LSSum ` U ) |
| 7 |
|
dih2dimb.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 8 |
|
dih2dimb.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
dih2dimb.p |
|- ( ph -> ( P e. A /\ P .<_ W ) ) |
| 10 |
|
dih2dimb.q |
|- ( ph -> ( Q e. A /\ Q .<_ W ) ) |
| 11 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
| 12 |
4 11
|
dibvalrel |
|- ( ( K e. HL /\ W e. H ) -> Rel ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) ) |
| 13 |
8 12
|
syl |
|- ( ph -> Rel ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) ) |
| 14 |
|
eqid |
|- ( ( DVecA ` K ) ` W ) = ( ( DVecA ` K ) ` W ) |
| 15 |
|
eqid |
|- ( LSSum ` ( ( DVecA ` K ) ` W ) ) = ( LSSum ` ( ( DVecA ` K ) ` W ) ) |
| 16 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
| 17 |
1 2 3 4 14 15 16 8 9 10
|
dia2dim |
|- ( ph -> ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) C_ ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) ) |
| 18 |
17
|
sseld |
|- ( ph -> ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) -> f e. ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) ) ) |
| 19 |
18
|
anim1d |
|- ( ph -> ( ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) -> ( f e. ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
| 20 |
8
|
simpld |
|- ( ph -> K e. HL ) |
| 21 |
9
|
simpld |
|- ( ph -> P e. A ) |
| 22 |
10
|
simpld |
|- ( ph -> Q e. A ) |
| 23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 24 |
23 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 25 |
20 21 22 24
|
syl3anc |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 26 |
9
|
simprd |
|- ( ph -> P .<_ W ) |
| 27 |
10
|
simprd |
|- ( ph -> Q .<_ W ) |
| 28 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 29 |
20 28
|
syl |
|- ( ph -> K e. Lat ) |
| 30 |
23 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 31 |
21 30
|
syl |
|- ( ph -> P e. ( Base ` K ) ) |
| 32 |
23 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 33 |
22 32
|
syl |
|- ( ph -> Q e. ( Base ` K ) ) |
| 34 |
8
|
simprd |
|- ( ph -> W e. H ) |
| 35 |
23 4
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 36 |
34 35
|
syl |
|- ( ph -> W e. ( Base ` K ) ) |
| 37 |
23 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
| 38 |
29 31 33 36 37
|
syl13anc |
|- ( ph -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
| 39 |
26 27 38
|
mpbi2and |
|- ( ph -> ( P .\/ Q ) .<_ W ) |
| 40 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 41 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
| 42 |
23 1 4 40 41 16 11
|
dibopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( P .\/ Q ) .<_ W ) ) -> ( <. f , s >. e. ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
| 43 |
8 25 39 42
|
syl12anc |
|- ( ph -> ( <. f , s >. e. ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
| 44 |
31 26
|
jca |
|- ( ph -> ( P e. ( Base ` K ) /\ P .<_ W ) ) |
| 45 |
33 27
|
jca |
|- ( ph -> ( Q e. ( Base ` K ) /\ Q .<_ W ) ) |
| 46 |
23 1 4 40 41 14 5 15 6 16 11 8 44 45
|
diblsmopel |
|- ( ph -> ( <. f , s >. e. ( ( ( ( DIsoB ` K ) ` W ) ` P ) .(+) ( ( ( DIsoB ` K ) ` W ) ` Q ) ) <-> ( f e. ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
| 47 |
19 43 46
|
3imtr4d |
|- ( ph -> ( <. f , s >. e. ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) -> <. f , s >. e. ( ( ( ( DIsoB ` K ) ` W ) ` P ) .(+) ( ( ( DIsoB ` K ) ` W ) ` Q ) ) ) ) |
| 48 |
13 47
|
relssdv |
|- ( ph -> ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) C_ ( ( ( ( DIsoB ` K ) ` W ) ` P ) .(+) ( ( ( DIsoB ` K ) ` W ) ` Q ) ) ) |
| 49 |
23 1 4 7 11
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( P .\/ Q ) .<_ W ) ) -> ( I ` ( P .\/ Q ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) ) |
| 50 |
8 25 39 49
|
syl12anc |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( P .\/ Q ) ) ) |
| 51 |
23 1 4 7 11
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. ( Base ` K ) /\ P .<_ W ) ) -> ( I ` P ) = ( ( ( DIsoB ` K ) ` W ) ` P ) ) |
| 52 |
8 31 26 51
|
syl12anc |
|- ( ph -> ( I ` P ) = ( ( ( DIsoB ` K ) ` W ) ` P ) ) |
| 53 |
23 1 4 7 11
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. ( Base ` K ) /\ Q .<_ W ) ) -> ( I ` Q ) = ( ( ( DIsoB ` K ) ` W ) ` Q ) ) |
| 54 |
8 33 27 53
|
syl12anc |
|- ( ph -> ( I ` Q ) = ( ( ( DIsoB ` K ) ` W ) ` Q ) ) |
| 55 |
52 54
|
oveq12d |
|- ( ph -> ( ( I ` P ) .(+) ( I ` Q ) ) = ( ( ( ( DIsoB ` K ) ` W ) ` P ) .(+) ( ( ( DIsoB ` K ) ` W ) ` Q ) ) ) |
| 56 |
48 50 55
|
3sstr4d |
|- ( ph -> ( I ` ( P .\/ Q ) ) C_ ( ( I ` P ) .(+) ( I ` Q ) ) ) |